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ABSTRACT 

The technique of seed osmoconditioning, which consists of a 

controlled hydration and dehydration, was evaluated for use in foodstuff 

production. 

In the first experiment, soybean, wheat, mungbean, and sesame seeds 

were hydrated in polyethylene glycol (PEG), chitosan plus water (CH), 

citric acid (CA), and water (W). Hydrated seeds were either dehydrated 

to their original moisture content or left fully-hydrated and stored at 

5°C or 15°C for 2 or 4 weeks. Fully-hydrated and dehydrated seeds 

sprouted faster than untreated seeds, but the performance of 

fully-hydrated seeds declined during storage. Phytate content in 

soybean and mungbean seeds increased with the initial hydration. 

Phytate decreased when seeds were dehydrated, but phytate content in 

fully-hydrated seeds remained high. To assess microbiological safety, 

aerobic plate counts, total coliform counts, and yeast and mold counts 

were performed. Dehydrated seeds had lower microbial counts than 

fully-hydrated seeds. Polyethylene glycol and citric acid had an 

antimicrobial effect. 

In the second experiment, soybean and wheat seeds were 

surface-sterilized with NaOCl, EtOH, or a control. Seeds were hydrated 

in PEG, CA, or W. Following hydration, seeds were treated with calcium 

propionate or a control, and then dehydrated. The crops were 

analyzed as dry, unsprouted seeds and as 48-hour sprouts. Citric acid 

and NaOCl had antimicrobial impacts on unsprouted seeds, but sprouted 

seeds had microbial counts up to 10^ higher than unsprouted seeds 
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regardless of treatment. The calcium propionate treatment reduced total 

coliforra counts in wheat by a factor of 10. Some counts declined after 

16 weeks of 4°C storage. Sprouting resulted in increased phytate in 

soybeans (40%) and wheat (10%). Sprouts from osmoconditioned and 

untreated seeds were rated similarly in sensory analyses. 

In the final experiment, phytate content and phytase activity of 

soybean and wheat seeds were determined during the osmoconditioning 

process and during a subsequent 144-192 hour sprouting period. While 

phytate content in wheat seeds and sprouts did not change during 

osmoconditioning or sprouting, phytase activity increased throughout the 

sprouting period. Phytate in soybean seeds increased at 8 hours of 

sprouting, and decreased at 192 hours. The reduced content at 192 hours 

coincided with an increase in phytase activity. Osmoconditioned and 

untreated sprouts did not differ with regard to phytate content or 

phytase activity. 
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GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation begins with the General Introduction, which is 

comprised of this statement of organization as well as the Rationale for 

Research and the Literature Review. Following the introduction is the 

main component of the dissertation, which consists of three manuscripts 

that will be submitted to peer-reviewed journals for publication. The 

dissertation concludes with General Conclusions and Acknowledgments. 

All of the experiments and experimental analyses in this dissertation 

were conducted by the candidate, Julie M. Goldman, with the exception of 

the microbiological laboratory procedures. 

Rationale for Research 

The technique of seed osmoconditioning, traditionally used to 

enhance seed germination and stand establishment of agronomic and 

horticultural crops, has the potential to enhance food production in a 

more immediate manner. When sprouted seeds are used directly as a 

foodstuff, osmoconditioning may result in improved foodstuff quality and 

increased efficiency of production. 

Because osmoconditioning reduces the time repuired for sprouting, 

the technique should decrease the time required for production of 

sprouts as a foodstuff. Furthermore, microbiological safety, sensory 

quality, and nutritional status of sprouts are likely to be impacted by 

the hydration and dehydration procedures of osmoconditioning and the 

accelerated timecourse of development. Of special interest is the 
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status of phytate, an antinutritional factor whose synthesis and 

catabolism are greatly affected by conditions of the sprouting process. 

The goal of this research was to evaluate osmoconditioning for use 

in foodstuff production. The specific objectives included: 1) the 

assessment of osmoconditioning in terms of production time, nutritional 

status, microbiological safety, and sensory impact; and 2) an assessment 

of phytate metabolism during osmoconditioning and sprouting. 

Literature Review 

Sprouted Seeds as a Foodstuff 

The ancient practice of sprouting seeds for human consumption 

continues as a modern-day means of obtaining a flavorful, nutritious 

product. Sprouted seeds, which are often referred to as "sprouts," are 

typically consumed as a fresh vegetable in salads, sandwiches, and 

casseroles. Sprouted seeds also are processed via retort and 

dehydration, thereby yielding foodstuffs with a longer storage life than 

fresh sprouts and with additional uses, such as incorporation into 

cereals and soup mixes. Following dehydration, sprouts also can be 

milled to flour to be incorporated into bakery products, beverages, and 

weaning foods. 

Crop seeds used for sprouting include most of the cereal and legume 

crops, including soybean, wheat, mungbean, miscellaneous beans, pea, 

millet, corn, alfalfa, and barley. While less common, sprouts are also 

produced from seeds of sesame, radish, buckwheat, sunflower, almond, 

clover, flax, lentil, and pumpkin (Larimore, 1975). 
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The production of sprouts is a process with minimal inputs of time, 

energy, and labor. Relatively small quantities of water, oxygen, heat, 

and light are required for the several days of sprouting, and there are 

virtually no waste products from production, processing, and 

consumption. 

Several desirable nutritional changes occur during the process of 

sprouting. First of all, when compared on a dry weight basis with 

unsprouted seeds, sprouted seeds from a wide range of crops exhibited an 

increased content of ascorbic acid, B-group vitamins, and some amino 

acids (Kylen and McReady, 1975; Pennington and Church, 1989; Fordham et 

al., 1975; Chen et al., 1975; Lemar and Swanson, 1976). Secondly, 

protein and starch digestibility improved with sprouting (Chavan and 

Kadam, 1989) , and the PER (protein efficiency ratio) of soybeans 

increased (Bau and Debry, 1979) . Thirdly, antinutritional factors such 

as trypsin inhibitor, tannins, and phytate were reduced in many crops 

when sprouting occurred (Bartnik and Szafranska, 1987; Kumar and 

Chauhan, 1993; Vidal-Valverde et al., 1994; Larsson and Sandberg, 1992; 

Dagnia et al., 1992; Beal et al., 1984; Mihailovic et al., 1965). 

Sprouted seeds, with a high moisture content and active metabolism, 

supported a much higher microbial population than dry seeds (Prokopowich 

and Blank, 1991; Splittstoesser et al., 1983; Andrews et al., 1982). 

Although the high counts do not typically indicate a health concern, 

since pathogenic bacteria such as Salmonellae spp. are not commonly 

found in plant foodstuffs (Splittstoesser et al., 1983), appropriate 

sprouting methodology and antimicrobial treatments can aid in limiting 
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microbial growth (Sawyer et al., 1985; and Splittstoesser et al., 1983). 

Sprouting Methodology 

The same principles apply to sprout production even though 

materials and methods may differ. Seeds are soaked in water for a 

period of several hours to hydrate the seeds and initiate the sprouting 

process. Thereafter, seeds are kept moist by regular rinsing or 

sprinkling treatments. Seeds typically are considered to have sprouted 

when the radicle (first root) emerges. The length of the first root or 

the first shoot is often used as an indicator of maturity, which is 

based on consumer preference in terms of flavor, texture, and 

appearance. Sprouts typically reach the desired stage of development in 

1 to 6 days, depending on the species, the vigor of the seeds, and the 

sprouting environment. Once harvested, sprouts may be stored for 

several days under refrigeration (Larimore, 1975; Blanchard, 1975) . 

When sprouts are produced in a large-scale operation, the process 

may utilize automated enquipment, with greater environmental control 

than might be found with small-scale production. The materials and 

methods for small-scale production are typically inexpensive but 

labor-intensive. Methods such as the "glass jar method," the "clay pot 

method," and the "plastic tub method" (Larimore, 1975) are recommended 

for home use and are often used, with minor modifications, for 

food-service production (Sawyer et al., 1985) and for experimental work 

(Marero et al., 1988; and Larsson and Sandberg, 1992). 
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Osmoconditioning 

Seed osmoconditioning, or "priming," is a means of enhancing the 

sprouting process. The technique has traditionally been used to enhance 

stand establishment in field production of agronomic and horticultural 

crops. Osmoconditioning allows seeds to commence but not complete 

germination by providing for a controlled hydration, i.e., the seed 

moisture content is not allowed to reach the level necessary for radicle 

emergence. Following the hydration, seeds are dehydrated to their 

original moisture content to facilitate storage (Bradford, 1986). When 

the osmoconditioned seeds are exposed to an appropriate germination 

environment, the seeds typically germinate more quickly and more 

uniformly than untreated seeds (Heydecker and Coolbear, 1977; and Smith 

and Cobb, 1991), especially under adverse conditions (Bodsworth and 

Bewley, 1981; and Dell'Aquila and Tritto, 1990). Lalonde and Bewley 

(1986) attributed he faster germination to the pattern of protein 

synthesis, which entailed both qualitative and quantitative changes. 

When seeds were hydrated, but not sufficiently for germination, and then 

dehydrated, protein-synthesizing mechanisms reverted to production of 

proteins typical of earlier stages of hydration. However, the reversion 

was only partial, and the seeds never reverted to the metabolic status 

of the initial dry seed. 

Controlled hydration usually is achieved by using osmotica such 

as polyethylene glycol (PEG) or salt solutions such as NaCl. Water 

alone may be used, but the treatment time and temperature must be more 

carefully controlled. Alternatively, water can be used in conjunction 
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with water-absorbing materials such as vermiculite, shale, or sphagnum 

moss in a process called solid matrix priming or matriconditioning 

(Taylor at al., 1988). 

Phytate in Seeds and Sprouted Seeds 

Overview Phytate is one of the antinutritional factors 

commonly studied in nutritional assessments of cereal grains, legumes, 

and other seeds. As the primary storage form of phosphorus in plant 

seeds, phytate comprises 50-90% of the total phosphorus in plant seeds. 

The terms phytate (inositol hexaphosphate, or the mono to dodeca 

anion of phytic acid) and phytic acid (inositol hexaphosphoric acid) are 

used somewhat interchangeably, and the term phytin (a calcium-magnesium 

salt of phytic acid) is also used by some researchers and reviewers 

(Maga, 1982) . 

Originally, phytate was considered important because it provided 

phosphorus for germinating seeds and young seedlings. It is now 

recognized that phytate also supplies myo-inositol and cations, and 

plays a role in sequestering and chelating metallic cations. Additional 

roles will no doubt be ascribed to phytate as research continues. One 

such role is the function of phytate in the inositol phosphte signalling 

system. Also referred to as "signal transduction," the system is a 

mechanism for the transmission of signals across cell membranes via 

second messengers such as IP3 (inositol-l,4,5-triphosphate). The 

messengers are regulated by receptor-controlled hydrolysis of inositol 

phospholipids (Billington, 1993). 
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Phytate acts as an antinutrient by binding divalent cations, thus 

reducing the bioavailability of iron, zinc, and calcium (Torre et al., 

1991; Beal et al., 1984; Heaney et al., 1991; Hurrell et al., 1992). A 

high phytate content in foodstuffs also reduces protein and starch 

digestibility (Knuckles et al., 1985; and Thompson and Yoon, 1984). 

Phytate content may be reduced by several processes, including the 

leaching of water-soluble forms of phytate (Chang et al., 1977), high 

temperature destruction (Lehrfield, 1994; and deBoland et al., 1975), 

acid or alkaline extraction (Hartman, 1979), dialysis and 

ultrafiltration (Erdman, 1979), fermentation (Ranhotra et al., 1974), 

soaking and hydration (Chang et al., 1977; Beleia et al., 1993; and 

Jones and Boulter, 1983), and sprouting of seeds (Salunkhe and Kadam, 

1989; Vidal-Valverde, 1994; Kumar and Chauhan, 1993; Sattar et al., 

1990; and Dagnia et al., 1992). 

Phytate Synthesis During the growth and development of field 

crops, phytate typically begins to accumulate after pollination and 

continues to do so until seeds are fully developed. When crops were 

grown with varying levels of nutrient phosphorus, the nonphytic 

phosphorus remained relatively constant in wheat (Michael et al., 1980) 

and soybean (Raboy and Dickinson, 1987), while the phytic phosphorus 

increased. In soybean, germination and growth of seeds with reduced 

levels of phytate was similar to that of control seeds, and this 

suggests that cultivated soybeans contain "luxury levels" of phytate 

(Raboy et al., 1985). 

As phytate is synthesized, the deposition in cereal crops is 
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generally tissue-specific. For example, in wheat (O'Dell et al., 1972) 

and rice (Kennedy and Schelstraete, 1975) , most of the phytate is found 

in the aleurone layer. In corn, approximately 90% of the phytate is in 

the germ (O'Dell, 1972). In dicot species, deposition is generally in 

the endosperm, embryonic axis, and cotyledons (Raboy, 1990), and the 

phytate is usually concentrated within globoids inside the protein 

bodies (Lott, 1984). Soybean phytate also is associated with protein 

bodies (Tombs, 1967), and the deposits are evenly distributed throughout 

the tissues of the cotyledon (Lott, 1984). 

Many studies have documented phytate synthesis and accumulation 

during seed development, and there is also documentation of synthesis 

during the early stages of sprouting. Mandal and Biswas (1970) 

conducted a study that examined phytate synthesis in mungbean 

cotyledons. During a 72-hour soaking period, incorporation of 32p into 

inositol phosphates was maximal at 36 hours of soaking. The researchers 

concluded that synthesis was initiated after 12 hours of soaking, after 

which the rate of synthesis increased up to 36 hours and then decreased. 

It was further concluded that the incorporation of labelled phosphorus 

was not due to an exchange reaction with phosphorus hydrolyzed by 

phytase. 

Sutardi and Buckle (1985) reported that phytate content of soybeans 

increased by 57% following 24 hours of soaking. Moeljopawiro et al. 

(1988) also reported an increase in phytate content when whole raw 

soybeans were boiled and soaked, and they suggested that the increase 

was related either to a loss of solids during soaking and boiling or to 
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the soaking process itself. 

Dmitrieva and Sobolev (1985) studied the sequence of phytate 

mobilization in different tissues of the castor bean and the 

distribution between storage tissues and growing parts of the seed. 

They found that there was a net accumulation of phytate within the 

cotyledon during seed development and subsequent germination, with 

accumulation due to de novo synthesis. The authors suggested that 

delivery of inorganic phosphorus to growing parts of seedlings can be 

regulated by the "secondary deposition" of phytate in cotyledons, which 

would provide a phosphorus reserve for subsequent formation of shoot 

tissues. 

Organ et al. (1988), again working with germinating castor beans, 

found that the mobilization of phytate reserves in the embryonic axis, 

endosperm, and cotyledons was followed by an extensive synthesis of 

phytate, especially in the cotyledons. With adequate supplies of 

exogenous inorganic phosphorus, cotyledons isolated from seeds 2 days 

after imbibition synthesized phytate for up to 6 more days. This 

ability to synthesize phytate was retained by the cotyledons even when 

phosphate was not present. 

At present, the mechanisms involved with phytate synthesis are 

unclear. Two hypothetical pathways of phytate synthesis in plants 

were summarized by Raboy (1990). In the first pathway, based on Biswas 

et al. (1978), myo-inositol kinase catalyzes the phosphorylation of 

myo-inositol to myoinositol monokisphosphate (IPi). The pathway 

proceeds via a stepwise phosphorylation of IPi to the pentaphosphate 
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(IPs), catalyzed by phosphoinositol kinase. The final step to the 

hexaphosphate IPs is catalyzed by either phosphoinositol kinase or an 

ADP phosphotransferase. In the second pathway, based on Irvine et al. 

(1986) and Majerus et al. (1988), phosphatidylinositol is phosphorylated 

to the triphosphate, IP3, which is then phosphorylated in a stepwise 

manner with catalysis by one or more kinases or a phosphotransferase 

enzyme. 

In studies characterizing the phosphoinositol kinase in germinating 

mung bean seeds (Majumder et al., 1972), the enzyme was found to be 

different from inositol kinase, which mediates the phosphorylation of 

myoinositol to inositol monophosphate. In addition, phosphoinositol 

kinase had a pH optimum of 7.4 and required divalent cations and ATP to 

carry out the phosphorylation of lower inositol phosphates to their 

corresponding higher homologues. In further studies (Majumder and 

Biswas, 1973 a), the immediate product of each step of the reaction, 

from IP2 to IPg, exhibited a competitive inhibition. Formation of the 

final product, IPg, thus was encouraged. It was proposed that IPg is 

continuously removed from the reaction region or is complexed to favor 

its continuing synthesis. 

Majumder and Biswas (1973 b) also characterized a phosphoinositol 

kinase inhibitor that is hypothesized to accumulate during the latter 

stages of seed ripening. The authors suggested that the failure to 

detect phosphoinositol kinase activity in mature ungerminated seeds was 

not due to absence of the enzyme, but to the presence of a complex of 

phosphoinositol kinase and the inhibitor. The labile complex was 
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thought to dissociate during early stages of sprouting. 

Phytate Hydrolysis The enzymes and mechanisms involved with 

phytate synthesis are still unclear. In contrast, the enzymatic 

hydrolysis of phytate has been extensively studied. The enzyme of 

interest is phytase (myo-inositol-hexaphosphate phosphohydrolase, 

E.C.3.1.3.8), which catalyzes the hydrolysis of phyate to inositol and 

inorganic phosphate (Maga, 1982). 

Studies with germinated wheat seeds (Mihailovic et al., 1965) 

indicated that the hydrolysis occurred in a stepwise manner -- there was 

an intermediate formation of penta, tetra, tri, di, and monophosphates 

of inositol as phosphoric acid was also being liberated. Blatny et al. 

(19 94) noted a similar process when hydrolyzing phytate with wheat 

phytase. In experiments with mungbeans, the rate of dephosphorylation 

increased at each step, indicating that once hydrolysis of IPg was 

initiated, the complete hydrolysis of IPg to inorganic phosphorus would 

occur very quickly (Mandal et al., 1972). 

The activity of phytase was typically very low or even undetectable 

in dry or dormant seed (Lolas and Markakis, 1977; Mihailovic et al., 

1965; and Gibson and Ullah, 1988) . The activity increased gradually 

during sprouting until peaking at about 2 to 3 days for mungbean 

cotyledons (Mandal and Biswas, 1970 b), 4 days for wheat (Bartnik and 

Szafranska, 1987), 4 to 6 days for pea (Young and Varner, 1959), 6 days 

for fababean (Eskin and Wiebe, 1983), 9 days for cotyledons of Pbaseolus 

vulgaris var Improved Canadian Wonder (Gibbins and Norris, 1963), and 

8 to 12 days for soybean cotyledons (Gibson and Ullah, 1988). 
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Optimum conditions for hydrolytic activity of phytase vary somewhat 

depending on the species. For wheat, optimum pH was cited at 5.1 

(Bartnik and Szafranska, 1987) or 5.5 (Peers, 1953; and Sartirana and 

Biachetti, 1967), with 55°C cited as the optimum temperature. Peers 

(1953) noted that in the absence of substrate and hydrolysis products, 

some inactivation of the enzyme occurred at 55°C. He suggested that 

the substrate and hydrolysis products may protect the enzyme from heat 

inactivation. Navy beans and California small white beans had very 

similar pH (5.2) and temperature (60°C) optima (Chang and Schwimmer, 

1977; and Lolas and Markakis, 1977), and as temperatures increased above 

65°C the activity decreased markedly. Soybean phytase had optimal 

conditions of pH 4.8-4.9 and 60°C (Sutardi and Buckle, 1986) and pH 

4.5-4.8 and 55°C (Gibson and Ullah, 1988), and activity decreased at 

temperatures above 60°C. Several other crops had similar optimal 

conditions of pH and temperature, although Mandal et al. (1972) cited a 

pH of 7.5 for mung bean phytase. 

Several metals affect phytase activity in vivo. Enhanced activity 

was reported with magnesium and calcium in wheat (Peers, 1953), and 

magnesium, manganese, and calcium at 0.2 to 5 mM concentrations in 

soybean (Gibson and Ullah, 1988). Gibson and Ullah (1988) also reported 

that zinc and iron at 0.5 to 2 mM concentrations inhibited phytase in 

soybean, possibly due to metal complexation with phytic acid, leading to 

formation of partially insoluble metal complexes. Sutardi and Buckle 

(1985) found that ferrous iron enhanced phytase activity, whereas zinc, 

copper, mercury, manganese, magnesium, calcium, cobalt, and aluminum 
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were inhibitory at a concentration of 1 mM. 

The reaction product of phytate hydrolysis, inorganic phosphate, 

acted as a competitive inhibitor in mung beans (Mandal et al., 1972), 

California small white beans (Chang and Schwimmer, 1977), and soybeans 

(Gibson and Ullah, 198 8). In wheat embryos, inorganic phosphate caused 

a decrease in phytase activity and repressed phytase synthesis 

(Sartirana and Biachetti, 1967). Furthermore, high substrate 

concentration resulted in partial inhibition of phytase (Sutardi and 

Buckle, 1986; Chang and Schwimmer, 1977; and Lolas and Markakis, 1977). 
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OSMOCONDITIONED SEEDS AS A FOODSTUFF; 
DIMENSIONS OF SPROUTING PERFORMANCE, ANTINDTRIENT STATUS, 

AND MICROBIOLOGICAL SAFETY 

A paper to be submitted to The Journal of Food Science 

Julie M. Goldman^, Amadu D. Ayebo^, Mark H. Love^, James S. Dickson^ 

Abstract 

The technique of seed osmoconditioning, which consists of a 

controlled hydration and dehydration, was evaluated for use in foodstuff 

production. Soybean, wheat, mungbean, and sesame seeds were hydrated in 

polyethylene glycol, chitosan plus water, citric acid, and water. 

Hydrated seeds were either dehydrated to their original moisture content 

or left fully-hydrated, and stored at 5°C or 15°C for 2 or 4 weeks. 

Fully-hydrated and dehydrated seeds sprouted 20 to 50% faster than 

control seeds, but the performance of fully-hydrated seeds declined 

during storage. Phytate content in soybean and mungbean seeds increased 

with the initial hydration. Phytate decreased when seeds were 

dehydrated, but phytate content in fully-hydrated seeds remained high 

throughout storage. Dehydrated seeds had lower lower microbial counts 

than fully-hydrated seeds. Polyethylene glycol and citric acid had 

antimicrobial activity. 

Introduction 

The germination or sprouting of seeds yields a food product quite 
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different from the original dry seeds. Nutritional changes occur, with 

sprouted seeds from a wide range of crops exhibiting an increased 

content of ascorbic acid, B-group vitamins, and some amino acids (Kylen 

and McReady, 1975; Pennington and Church, 1989; Fordham et al., 1975; 

Lemar and Swanson, 1976; Chen et al., 1975) . Protein and starch 

digestibility usually improve, and reduction of antinutritional factors 

occurs in many cases (Chavan and Kadam, 1989; Bartnik and Szafranska, 

1987; Vidal-Valverde et al., 1994; Larsson and Sandberg, 1992; Dagnia et 

al., 1992; Beal et al., 1984; Mihailovic et al., 1965; Kumar and 

Chauhan, 1993). Since microbiological changes also occur, with sprouted 

seeds supporting a much higher microbial population than dry seeds 

(Sawyer et al., 1985; Marero et al., 1988), sprouting methodology is 

critical in obtaining a nutritious, microbiologically safe foodstuff. 

In this study, a technique traditionally used to enhance stand 

establishment and field production of agronomic and horticultural crops 

-- seed osmoconditioning -- was evaluated for use in foodstuff 

production. Osmoconditioning allows seeds to begin the metabolic 

processes of germination as the seeds are hydrated. Germination is not 

completed because the hydration process is stopped before the seed 

moisture content is sufficiently high for radicle emergence. 

Following hydration, seeds usually are dehydrated to the original 

moisture content as a means to facilitate storage. When the 

osmoconditioned seeds are subsequently exposed to the sprouting 

environment, the seeds complete germination more quickly and uniformly 

than untreated seeds, especially under suboptimal environmental 
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conditions (Heydecker and Coolbear, 1977; Bradford, 1986). 

The impact of osmoconditioning on foodstuff production was assessed 

by determining sprouting performance, microbiological activity, and 

phytate concentrations in soybean, wheat, mungbean, and sesame. 

Sprouting performance is of interest because of time and space 

constraints on food production systems. Microbial activity is a major 

factor in food safety, and it also has an impact the overall quality of 

the foodstuff. The antinutrient phytate is of special interest because 

treatments similar to aspects of osmoconditioning -- soaking, storage, 

and germination -- affect phytate concentrations in foodstuffs (Salunkhe 

and Kadam, 1989; Sutardi and Buckle, 1985; Beleia et al., 1993; Bartnik 

and Szafranska, 1987; Jones and Boulter, 1983; Vidal-Valverde et al., 

1994). Phytate is the inorganic ester of the hexa-alcohol inositol, and 

as the primary storage form of phosphorus in plant seeds, it is found in 

a wide variety of foodstuffs. Phytate has been studied extensively due 

to its antinutrient activity. It binds divalent cations, most notably 

the minerals calcium, iron, and zinc, and therefore it has a substantial 

impact on human nutrition (Torre et al., 1991; Beal et al., 1984; Heaney 

et al., 1991, Hurrell et al., 1992). 

Materials and Methods 

Seed Treatment 

Wheat {Triticum aestivim), mungbean {Vigna radiata), and sesame 

{Sesamum orientals) seeds were obtained from Arrowhead Mills (Hereford, 

TX) in June 1993 and were stored at room temperature until treatments 

were applied in July. The wheat, hard red winter high-protein, was grown 
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and harvested in Texas, and the seeds were nitrogen-packaged. Mungbean 

seeds were grown in Oklahoma. Following harvest, the seeds were 

nitrogen-packaged. The sesame seeds were grown in Southwest Mexico and 

packaged in sealed plastic bags following harvest. Hulls were not 

removed from the seeds. Glycine max var. Vinton 81 soybean seeds, grown 

in Iowa and harvested in the fall of 1992, were stored in sealed plastic 

containers at 4°C. 

Imbibition media, hereafter referred to as osmotica, included two 

materials used for osmoconditioning agronomic and horticultural crop 

seed, polyethylene glycol (PEG) and a solid matrix priming material 

called chitosan (CH). While both materials have proven to be effective 

for the osmoconditioning process, neither is listed as a GRAS (generally 

recognized as safe) food additive. The other osmotica, citric acid (CA) 

and water (W), are safe for food use. Citric acid has antimicrobial 

properties due to its low pH and the metabolic inhibition caused by 

undissociated acid molecules (Jay, 1991). 

The osmotica were prepared as follows: 1) polyethylene glycol 8000 

(Sigma Chemical Co., St. Louis, MO), 250 g/kg distilled water; 2) 

Chitosan Pro Floe 123 (Protan, Inc., Raymond, WA), a deacetylated 

product of poly N-acetylglucosamine, at lg/6ml distilled water,- 3) 

citrate buffer of 0.05 M and pH 4.4, made from citric acid monohydrate 

and sodium citrate dihydrate; and 4) distilled water. 

Quantities of 300g seed were placed in Ziploc (Dow Corning, 

Midland, MI) 4000 ml storage bags of 1.75 mil thickness. For each crop, 

the 15 combinations of replicates (3) and osmotica (4 plus 1 "untreated" 
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control) were then randomly assigned, one to each of 15 bags. Sampling 

#1 took place at this time. Six hundred ml of the assigned osmoticum 

was added to each bag, or in the case of CH, 600 ml water plus 100 g 

chitosan. Bags were randomly arranged in a dark growth chamber at 25°C. 

CH, CA, and W treatments were applied for 4 hr (10 hr for mungbean) and 

the PEG treatments were 16 hr in length. Previously, tests had been 

performed to determine the optimal hydration time for seeds to achieve 

maximum moisture content without risk of germination. 

Following hydration, all the bags were drained and the seeds were 

rinsed once in 600 ml distilled water, except for the CH-treated seeds 

which required washing with approximately 1800-2400 ml water. Rinsed 

seeds were placed on absorbent toweling for up to 30 min to surface dry, 

after which sampling #2 was performed. Seeds from each bag were divided 

into two groups, one of which was stored in a clean Ziploc bag at 15°C 

for approximately 24 hr while the other group was dehydrated in a food 

dehydrator (Harvest Maid Model 2400, Alternative Pioneering Systems, 

Chaska, MN) at 40°C. The dehydration continued until the seed moisture 

content was approximately equal to original moisture content, a process 

requiring 4 to 12 hr. 

After the dehydrated seeds had cooled to room temperature, they 

were placed in Ziploc bags and stored at 15°C for the remainder of the 

24 hr period, at which time sampling #3 was performed for both the 

hydrated and dehydrated groups. Following sampling #3, seeds were again 

split into two groups, each of which was placed in a sterile 750 ml 

Whirlpak bag (Nasco, Fort Atkinson, WI). One group of bags was stored 
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at 5°C and the other group at 15°C. Samplings #4 and #5 were performed 

after 2 and 4 weeks of storage, respectively. Sufficient seeds were 

withdrawn at each sampling time to make determinations on moisture 

content, germination, phytate, and microbiological counts. Due to 

visually-apparent microbiological contamination and seed deterioration, 

hydrated seeds stored at 15°C for 4 weeks were not sampled. 

Moisture Content 

To verify the degree of hydration and dehydration of seeds, 

moisture content was determined. Samples of 10 seeds (approximately 100 

for sesame) were placed on Kimwipes (Kimberly-Clark, Roswell, GA) until 

surface-dry, then weighed to determine fresh weight. After being dried 

to constant weight at 103°C, samples were weighed again to determine dry 

weight. Moisture content was computed as a percentage, on a fresh weight 

basis. 

Sprouting/Germination 

All sprouting performance tests were conducted by placing samples 

of 10 seeds on 2 layers of Whatman #1 filter paper (Whatman Int'l. Ltd., 

England) in 100 x 15 mm plastic petri plates (Fisher Scientific Co., 

Canada). The filter paper was moistened with the necessary amount of 

distilled water. Covered plates were incubated at 25°C in complete 

darkness. Data were taken on the time required for 50% germination, 

with seeds checked every 6 hr for evidence of radicle emergence. Data 

were taken on germination percentage after 48 hr. 
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Phytate 

Samples of sufficient size to supply 10 g dry matter were placed in 

60 ml sterile Whirlpak bags, frozen in liquid N, and stored at -18°C. 

Following freeze-drying (FreezeDry-5, Labconco, Kansas City, MO), 

samples were ground in a coffee grinder (Braun, Inc., Lynnfield, MA) for 

20 s and sieved through a 20 mesh screen. Phytate analyses were 

performed according to the colorimetric method of Vaintraub and Lapteva 

(1980), which is a modification of the method of Latta and Eskin (1980) . 

Microbiological 

Ten gram samples were placed in sterile 60 ml Whirlpak bags for 

microbiological quality determinations. Samples were placed in peptone 

buffer and processed in a stomacher (model 400 Mark II, Tekmar, 

Cincinnati, OH) at normal speed for 120 s. Appropriate serial dilutions 

in buffered peptone water (Accumedia) were plated via a spiral plater 

(Model D, Spiral Systems, Cincinnati, OH) onto duplicate plates of 

tryptic soy agar (TSA) for aerobic plate counts (APC), violet red bile 

agar (VRBA) for total coliform counts (TC), and potato dextrose agar 

(PDA) for determining yeast and mold counts (YM). The plates were 

incubated as follows: TSA at 32°C for 48 hr, VRBA at 37°C for 24 hr, and 

PDA at 25°C for 120 hr. Plates were visually counted using methods 

appropriate for spiral plates (Peeler and Maturin, 1992) . 

Some counts were recorded as "too many to count" in plates where 

the colonies exceeded the manual counting capability; numeric values for 

these samples were obtained by the following formula: 10,000 x 

1/greatest dilution. For data analysis, the arithmetic mean of the 
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duplicate plates was computed and then converted to a logio mean by the 

following formula: logio mean = logio of (arithmetic mean + 1.00). l.OO 

was added to the arithmetic mean to allow the use of zero counts. 

Counts were reported as logio means of colony forming units (CFU)/g of 

seed. 

Statistical Analyses 

Statistical analyses for phytate and microbiological data were 

performed by using ANOVA (analysis of variance) produced by the GLM 

(general linear models) procedure in SAS (Statistical Analysis System, 

version 6.07). Each crop was analyzed separately. Due to storage 

problems, sesame samples from sampling times 4 and 5 (2 and 4 weeks of 

storage) were not available for analyses. 

Data from sampling time l were analyzed to determine if phytate 

content and microbial counts differed (prior to treatment) among the 15 

bags designated to receive the different hydration treatments. The 

impact of the initial hydration was then assessed by analyzing data from 

sampling time #2 (following hydration). Data were analyzed as a 

completely randomized design, with hydration treatment (untreated, PEG, 

CH, CA, and W) as the factor and replications within hydration treatment 

as the error term. The effect of dehydration was examined by using data 

from sampling time 3 (following dehydration), with osmoticum as the 

whole-plot factor and hydration status and osmoticum by hydration status 

as split-plot factors in a split-plot design. 

A comparison was made among seeds stored for 2 weeks (sampling time 

4), with osmoticum as the whole-plot factor and hydration status, 
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Storage temperature, and all interactions as split-plot factors in a 

split-plot design. Seeds stored for 2 and 4 weeks were also compared 

(sampling times 4 and 5) by analyzing: a) dehydrated seed data only, 

with osmoticum as the whole-plot factor and storage time, storage 

temperature, and all interactions as split-plot factors in a split-plot 

design; and b) fully-hydrated seed stored at 5°C only, with osmoticum as 

the whole-plot factor and storage time and all interactions as the 

split-plot factors in a split-plot design. For all split-plot designs, 

the error term for the whole-plot factor was replications within 

osmoticum. The GLM procedure generated the appropriate error term for 

the split-plot factors for each model. 

Factors and interactions with a p value of < 0.05 were considered 

significant. Means separations were conducted via the 

Student-Newman-Keuls (SNK) test. 

Germination data were not distributed normally, so nonparametric 

analyses were performed on these data. Using the SAS frequency 

procedure, the effects of treatment variables on the dependent variables 

were assessed using row mean scores of the Cochran-Mantel-Haenszel 

statistic (SAS, 1990). The row mean scores, generated via contingency 

tables, provided probability values for accepting or rejecting the null 

hypothesis that a treatment variable had no effect on the dependent 

variable in question. If the p value was < 0.05, the null hypothesis 

was rejected. 
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Results and Discussion 

Sprouting/Gexminaticn 

The initial hydration treatment decreased the time required for 

germination, but did not impact germination percentage (Figure 1). As 

figure 2 illustrates, the soybean and mungbean seeds that remained 

hydrated sprouted more quickly than the dehydrated seeds. The 

performance of fully-hydrated sesame seeds was poorer than that of 

dehydrated seeds; the high oil content may have been a factor. Figure 2 

also illustrates that dehydrated seeds sprouted more quickly than 

untreated seeds; the difference was determined to be significant for all 

crops in a separate analysis which compared dehydrated and untreated 

seeds. Following both the initial hydration and the dehydration, 

osmoticum was a significant factor; PEG-treated soybeans required more 

time than the other osmotica to reach 50% germination, as did PEG and 

CA-treated mungbeans. 

After 2 weeks of storage, the conditions which resulted in 

significantly greater time to germinate and/or decreased germination 

percentage were: being fully-hydrated rather than dehydrated; being 

stored at 5°C rather than 15°C; and having been hydrated with PEG rather 

than the other osmotica. Fully-hydrated seeds probably performed poorly 

due to an increased rate of physiological deterioration and greater 

microbial infestation. The poor performance at 5°C was only among 

fully-hydrated seeds; a sensitivity to lower temperatures may have been 

induced by greater physiological deterioration among fully-hydrated 

seeds. And, the poorer performance of PEG-treated seeds may have been 
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due to reduced absorption of water and oxygen as a consequence of a 

residue left on the seed coats after hydration with PEG. 

During the full 4 weeks of storage, dehydrated seeds generally were 

not affected by storage time and temperature. However, PEG-treated 

soybeans required more time than the other osmotica to germinate and 

CA-treated soybeans and mungbeans had reduced germination percentages 

when compared with the other osmotica. When fully-hydrated seeds stored 

at 5°C were compared at 2 and 4 weeks of storage, the performance of 

mungbean seeds worsened with increasing time in storage. 

Phytate 

Before hydration, phytate content did not differ among the bags 

of seeds designated to receive different treatments. Following 

hydration, phytate content in soybean and mung bean seeds was 

higher than in untreated seeds (Table 1). 

Table 2 illustrates a comparison of seeds subjected to either 

dehydration or a 24-hr holding period following the initial hydration. 

Dehydrated seeds (except sesame) had lower phytate concentrations 

than fully-hydrated seeds, with differences of 41% for soy, 15% for 

wheat, and 25% for mungbean. Fully-hydrated seeds presumably continued 

to synthesize phytate, while the dehydration process may have enhanced 

enzymatic hydrolysis or a temperature-related breakdown of phytate. 

Data from our preliminary studies, where heat-killed soybean and wheat 

seeds were hydrated and dehydrated, indicate that the changes in phytate 

observed with viable seeds were not caused by a matrix effect. 

As further indicated in Table 2, the main effect of osmoticum was 
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significant for soybean, wheat, and mungbean. PEG-treated soybean and 

mungbean seeds had lower values than the other osmotica. Since the 

moisture content of the seeds hydrated with different osmotica 

varied somewhat, with the PEG-treated seeds tending to hydrate less 

fully, the impact of moisture content on phytate content was examined. 

Regressions of moisture content on phytate for soybean, mungbean, 

and sesame were significant, and these coefficients of variations were 

just slightly less than the values of the ANOVAs for effect of treatment 

on phytate. Hence, the impact of different treatments (osmotica) on 

phytate content is almost entirely a function of the moisture content 

achieved during hydration with the particular osmoticum. Higher 

moisture content may play a role in enhancing phytate synthesis. 

At 2 weeks of storage, phytate concentrations of PEG-treated 

soybean and mungbean seeds were again lower than concentrations for the 

other osmotica (Table 3). And, values for dehydrated soybean and 

mungbean remained lower than values for fully-hydrated seeds, by 36% and 

30%, respectively. Soybean seeds stored at 15°C had higher 

concentrations than those stored at 5°C, suggesting a relationship 

between temperature and the metabolism of phytate. The only significant 

interactions were for soybean, for the factors of osmoticum and 

hydration status, and osmoticum and temperature. The interaction means 

do not indicate any trends that change the conclusions noted for the 

main effects. 

In comparing seeds at 2 and 4 weeks of storage, fully-hydrated and 

dehydrated seeds were examined separately. The phytate content of 
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dehydrated soybean and mungbean seeds increased 15% and 12% respectively 

between 2 and 4 weeks. However, only PEG and CA-treated soybeans 

changed over time. There were some differences among osmotica, with 

patterns similar to those noted previously. 

Among fully-hydrated seeds, the phytate content of mungbean seeds 

stored at 5°C decreased from 2 to 4 weeks and soybeans did not differ 

between 2 and 4 weeks. It is possible that for these samples phytate 

synthesis eventually slowed or stopped. The rate of phytate hydrolysis 

also may have begun to increase. 

In summary, the initial hydration of soybean and mungbean resulted 

in an increase in phytate content. The phytate in hydrated soybean and 

mungbean seeds remained high for at least several weeks, even under 

reduced temperature storage. When seeds were dehydrated following the 

initial hydration treatment, phytate concentrations decreased to levels 

comparable with untreated seeds. 

The finding of increased phytate content following hydration is not 

surprising, considering that phytate content of soybeans increased by 

57% following 24 hours of soaking in preparation for tempeh production 

(Sutardi and Buckle, 1985). Furthermore, phytate synthesis occurred 

during the early phases of the sprouting process in studies with 

mungbean (Mandal and Biswas, 1970 a) and castorbean (Dmitrieva and 

Sobolev, 1985; and Organ et al., 1988). In addition, Mandal and Biswas 

(1970 b) determined that phytate synthesis peaked 12 to 24 hours earlier 

than did phytate hydrolysis during the sprouting of mungbean seeds. 

As for the impact of dehydration on phytate content, the decrease 



www.manaraa.com

32 

may be due to a temperature-related enhancement of enzymatic hydrolysis, 

or a re-formation of a complex that inhibits synthesis. 

Microbiological Activity 

Before hydration, microbial counts did not differ among the bags 

of seeds designated to receive different treatments. Following hydration 

(Table 4), CH-treated soybean and CA-treated sesame seeds had lower 

aerobic plate counts than the untreated seeds, and W-treated mungbean 

seeds had higher aerobic plate counts than untreated seeds or seeds 

treated with the other osmotica. The total coliform counts in the 

CA-treated wheat and sesame seeds were lower than counts in the 

untreated seeds or the seeds treated with the other osmotica, but total 

coliform counts were higher in CH and W-treated mungbean seeds. Yeast 

and mold counts in the W-treated sesame seeds were lower than the counts 

in untreated seeds. 

The instances of increased microbial populations in mungbean seeds 

suggest a rapid proliferation of microbes due to the availability of 

water. However, despite the availability of water, CA-treated wheat and 

sesame seeds had reduced microbial counts. 

Tables 5, 6, and 7 illustrate the effect of dehydration on 

microbial counts. Hydration status was a significant factor in several 

instances. The aerobic plate counts of dehydrated wheat and sesame 

seeds were lower than counts in fully-hydrated seeds, but higher than 

counts in untreated seeds. Total coliforms counts of dehydrated 

soybean, wheat, and sesame seeds were less than counts of fully-hydrated 

seeds, and, in the cases of soybean and wheat, less than or comparable 
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to untreated seed counts. For yeast and mold counts, dehydrated 

mungbean seeds had lower counts than fully-hydrated seeds. Some 

desiccation of microbes may have occurred during dehydration, and there 

was probably a continued proliferation of microbes on the fully-hydrated 

seeds during the 24-hr holding period, even though the seeds were held 

at 5°C. 

Osmoticum had an impact in wheat, where aerobic plate counts were 

lower in CA-treated seeds when compared to the other osmotica, and in 

soybean, where total coliforms in PEG-treated seeds were lower than in 

untreated seeds. For yeast and mold counts, CA and W-treated mungbean 

seeds had higher counts than untreated seeds, as did PEG and W-treated 

sesame seeds. The osmoticum by hydration status interactions indicate 

that in all cases except one (total coliform counts in CH-treated 

soybean), dehydrated seeds had lower counts than fully-hydrated seeds 

regardless of osmoticum. 

After 2 weeks of storage (Tables 8, 9, and 10), dehydrated soybean, 

wheat, and sesame seeds had lower microbial counts than fully-hydrated 

seeds except in the case of soybean yeast and mold counts. Counts of 

dehydrated and fully-hydrated mungbean seeds did not differ. The 

CA-treated wheat and sesame seeds again had lower counts than the other 

osmotica, and PEG-treated soybeans had lower total coliform counts. The 

fully-hydrated 15°C seeds had higher counts than the 5°C seeds in 

several instances. Among the significant hydration status by 

temperature interactions, the fully-hydrated-15°C soybean seeds (aerobic 

plate counts and yeast and mold counts), wheat seeds (aerobic plate 
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counts and total coliforms), and sesame seeds (aerobic plate counts and 

yeast and mold counts) had the highest counts. The other interactions 

were not significant. While yeast and mold counts for soybean and wheat 

were zero or near zero following hydration and dehydration, at 2 weeks 

of storage the counts were approximately 10^ for soybean and 103 to 10^ 

for wheat. 

In comparing dehydrated seeds at 2 vs 4 weeks of storage (Tables 

11, 12, and 13), storage time was a significant factor for soybeans, for 

which 4-week aerobic plate counts and yeast and mold counts were less 

than at 2 weeks. For mungbeans, aerobic plate counts and total coliform 

counts increased with time as yeast and mold counts decreased, and for 

wheat, aerobic plate counts increased from 2 to 4 weeks. Osmoticum was 

also a source of variation. PEG-treated soybeans had lower aerobic 

plate counts, total coliform counts, and yeast and mold counts than the 

other osmotica, as did PEG-treated mungbeans. For CA-treated sesame and 

wheat seeds, all counts were lower than counts for the other osmotica. 

When fully-hydrated seeds stored at 5°C were compared at 2 and 4 

weeks of storage, osmoticum was a significant factor for wheat, with 

counts for CA-treated seeds lower than for the other osmotica for all 

microbial categories. PEG-treated soybeans had lower counts for total 

coliforms. Storage time was significant in several cases, with an 

increase in one microbial category typically corresponding with a 

decrease in one or two of the other categories, an indication of 

microbial succession. For soybean, aerobic plate counts and yeast and 

mold counts decreased from 2 to 4 weeks, while total coliform counts 
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increased. With wheat, aerobic plate counts increased and total 

coliform counts increased. For mungbean, aerobic plate counts and total 

coliform counts increased while the yeast and mold counts decreased. In 

the case of sesame, all counts increased by a factor of 10^. 

The mean values of microbial counts reported here are comparable to 

the counts reported in other studies of dry and hydrated seeds (Richter 

et al., 1993; Prokopowich and Blank, 1991; Splittstoesser et al., 1983; 

and Andrews et al., 1982). However, the values reported here for 

fully-hydrated stored seeds are higher, indicating that fully-hydrated 

seeds are not well-suited for storage. The declines in sprouting 

performance noted earlier are further evidence that fully-hydrated seeds 

should not be stored if the ultimate intent is to sprout the seeds. 

Conclusions 

In situations that demand minimal sprouting time and improved 

microbial control, the technique of osmoconditioning may be of 

sufficient benefit to warrant treatment of the seeds. While PEG has 

an antimicrobial impact on soybean and mungbean seeds, the lack of GRAS 

status for seed osmoconditioning prevents its use as a food-grade 

osmoticum. Citric acid also has an antimicrobial impact, most notably 

on wheat and sesame seeds, and is a suitable food-grade osmoticum. 

Changes in phytate content indicate the need for an enzymatic assessment 

of seeds during the osmoconditioning treatment. 
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Table 1. Effect of initial hydration on phytate concentrations of 
soybean, wheat, munabean. and sesame seeds. 

Source of Phytate Concentration (g/lOOg dry seed) 
Variation^ Soybean Wheat Munabean Sesame 

Hydration Treatment ns^ ns 
Untreated 0 .92Cy 0.72 0. 66 y 1.70 
Polyethylene glycol 1 .38 z 0.73 1. 08 z 2.67 
Chitosan plus water 1 .60 z 0.74 1. 16 z nd'^ 
Citric acid 1 .52 z 0.74 1. 13 z 2 .36 
Water 1 .60 z 0.80 1. 16 z 2.50 

^General linear models procedure analysis of variance, SAS. 
bns = not significant at the 5% level. 
^Values are means of three replications; different letters (y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

<^nd = not determined. 

Table 2. Phytate concentrations of hydrated seeds undergoing 
dehydration to original moisture content versus seeds 
being held, fully hydrated. for 24 hours. 

Source of Phytate Concentration (g/lOOg dry seed) 
Variation^ Soybean Wheat Munabean Sesame 

Hydration Status ns^i 
Fully Hydrated l.SS^z 0.66 z 1.21 z 2.41 
Dehydrated 0.91 y 0.56 y 0.91 y 2.37 

Osmoticum ns 
Polyethylene glycol 1.07dxy 0.72 z 0.84 y 2.24 
Chitosan plus water 1.16 xy 0.51 x 1.20 z nd® 
Citric acid 1.24 y 0.57 xy 1.12 z 2.59 
Water 1.40z 0.66 yz 1.08 z 2.32 

Osmoticum x 
Hydration Status ns ns ns ns 

^General linear models procedure, SAS. 
bns = not significant at the 5% level. 
^Values are means over all replications and all osmotica; different 
letters (y,z) indicate statistically significant differences at 
the 5% level, Student-Newman-Keuls (SNK) test. 

dvalues are means of three replications of hydrated seeds and three 
replications of dehydrated seed; different letters (x,y,z) indicate 
statistically significant differences at the 5% level, SNK test. 

Snd = not determined. 
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Table 3. Effect of treatment and storage variables on phytate 
concentration of seeds after 2 weeks storage. 

Source of Phytate Concentration (g/lOOg dry seed) 
Variation^ Sovbean Wheat Munabean Sesame 

Osmoticum nd^ 
Polyethylene glycol(PEG) l.lO^y 0.81 y 1.05 y 
Chitosan plus water(CH) 1.31 z 0.80 y 1.18 z 
Citric acid (CA) 1.37 z 0.86 yz 1.28 z 
Water (W) 1.44 z 0.91 z 1.27 z 

Hydration Status ns'J 
Fully Hydrated (FH) 1.59 z 1.41 z 
Dehydrated (DH) 1.02 y 0.98 y 

Temperature ns ns 
15°C 1.36 z 
5°C 1.25 y 

Osmoticum x Hydration Status 
PEG-FH 
PEG-DH 
CH-FH 
CH-DH 
CA-FH 
CA-DH 
W-FH 
W-DH 

ns ns 
1.26ex 
0.94 V 
1.60 y 
1.01 w 
1.69 yz 
1.05 w 
1.80 z 
1.08 w 

Osmoticum x Temperature ns ns 
PEG-15°C 1.14 X 
PEG-5°C 1.06 X 
CH-15°C 1.28 y 
CH-5°C 1.33 yz 
CA-15°C 1.44 z 
CA-5°C 1.29 y 
W-15°C 1.56 z 
W-5°C 1.32 yz 

^General linear models procedure analysis of variance, SAS. 
bnd = not determined due to insufficient numbers of samples. 
^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

dns = not significant at the 5% level. 
^Values for interactions are least squares means; different 
letters indicate significant differences at the 5% level. 



www.manaraa.com

42 

Table 4. Effect of initial hydration on aerobic plate counts, 

total coliforms, and yeasts and molds in soybean, 
wheat, munabean, and sesame seeds. 

Microbial Source of Logxo Means of CFU/g seed 
Counts Variation^ Soybean Wheat Munabean Sesame 

Aerobic Hydration Treatment nst" 
Plate Untreated 7.4lCz 4.81 6 .99 y 4.66 z 
Counts Polyethylene glycol 4.95 yz 6.45 7 .36 y 5.77 z 

Chitosan plus water 0.00 y 6.09 7 .42 y nd^ 
Citric acid 2.36 yz 3.87 7 .00 y 1.33 y 
Water 7.58 z 5.30 8 .02 z 4 .26 z 

Total Hydration Treatment ns 
Coliforms Untreated 2.00 4.15 z 6 .58 y 4.43 yz 

Polyethylene glycol 0.00 5.71 z 7 .13 yz 5.81 z 
Chitosan plus water 2.23 4.83 z 7 .68 z nd 
Citric acid 4 .10 1.43 y 7 .01 yz 0. 00 X 
Water 2.00 5.15 z 7 .69 z 2.67 y 

Yeasts Hydration Treatment ns ns ns 
and Untreated 0.00 0.00 7 .11 7.00 z 
Molds Polyethylene glycol 0.00 0.00 7 .26 6 .53 yz 

Chitosan plus water 0.00 0.00 7 .94 nd 
Citric acid 0.00 0.00 8 .31 5.26 yz 
Water 0.00 0.00 8 .46 4.58 y 

^General linear models procedure analysis of variance, SAS. 
^ns = not significant at the 5% level. 
"^Values are means of three replications; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

dnd = not determined. 
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Table 5. Aerobic plate counts of hydrated seeds undergoing dehydration 

to original moisture content versus seeds being held, fully 
hydrated. for 24 hours. 

Source of 
Variation^ 

Logxo Means of CFU/g seed 
Soybean Wheat Munobean Sesame 

Hydration Status ns ns 
Fully Hydrated (FH) 6.96 6 .52 z 8 .45 6 .45 z 
Dehydrated (DH) 6.02 . 3 .37 y 8 .72 5.00 y 
Untreated 4.38 0 .00 X 8.10 3 .17 X 

Osmoticum nst" ns ns 
Polyethylene glycol (PEG) 7.25C 6 .62 z 8 .53 6 .31 
Chitosan plus water (CH) 5.62 5 .82 z 8.39 ndi^ 
Citric acid (CA) 6.57 2 .72 y 8 .59 4 .66 
Water (W) 6.53 4 .61 z 8.83 6.20 
Untreated 4.38 0 .00 X 8 .10 3 .17 

Osmoticum x Hydration Status ns ns ns 
PEG-FH 7.33 8 .56 8 .33 7.39ez 
PEG-DH 7.17 4 .68 8 .78 5.23 X 
CH-FH 6 .54 7 .23 8 .34 nd 
CH-DH 4.69 4 .42 8 .44 nd 
CA-FH 6.81 5 .44 8 .53 5.30 X 
CA-DH 6.33 0 .00 8 .65 4.02 w 
W-FH 7.17 4 .86 8 .60 6.65 y 
W-DH 5.90 4 .37 9.06 5.75 X 

^General linear models procedure analysis of variance, SAS. 
bns = not significant at the 5% level. 
c^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

<3nd = not determined. 
^Values for interactions are least squares means; different 
letters indicate significant differences at the 5% level. 
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Table 6. Total coliforms in hydrated seeds undergoing dehydration 
to original moisture content versus seeds being held, fully 
hydrated. for 24 hours. 

Source of Logio Means of CFU/g seed 
Variation^ Soybean Wheat Munabean Sesame 

Hydration Status ns 
Fully Hydrated (FH) 7 .20 Z 6.34 z 8 .36 z 6 .50 
Dehydrated (DH) 3 .53 y 3.28 y 7 .61 y 6 .01 
Untreated 7 .34 z 2.07 y 2 .10 X 3 .08 

Osmoticum nsl3 ns ns 
Polyethylene glycol (PEG) 4 .OOCy 5.54 7 .27 6 .50 
Chitosan plus water (CH) 6 .67 yz 5.68 8 .14 ndd 
Citric acid (CA) 6 .11 yz 3.47 8 .30 5 .67 
Water (W) 4 .68 yz 4.56 8 .22 6 .60 
Untreated 7 . 34 z 2.07 2 .10 3 .08 

Osmoticum x Hydration Status ns ns 
PEG-FH 8 .Ol^z 8.31 8 .30 z 7.18 
PEG-DH 0 .00 X 2.77 6 .24 X 5 .82 
CH-FH 6 .57 yz 7.10 8 .64 z nd 
CH-DH 6 .77 yz 4.26 7 .65 y nd 
CA-FH 6 .85 yz 5.45 8 .04 yz 5.61 
CA-DH 5 .36 y 1.49 8 .56 z 5 .72 
W-FH 7 .36 yz 4.50 8 .45 z 6 .72 
W-DH 2 .00 X 4 .62 8 .00 yz 6 .48 

^General linear models procedure analysis of variance, SAS. 
bns = not significant at the 5% level. 
^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

i^nd = not determined. 
^Values for interactions are least squares means; different 
letters indicate significant differences at the 5% level. 
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Table 7. Yeasts and molds in hydrated seeds undergoing dehydration 
to original moisture content versus seeds being held, fully 
hydrated. for 24 hours. 

Source of Logio Means of CFU/g seed 
Variation^ Soybean Wheat Munabean Sesame 

Hydration Status ns ns ns 
Fully Hydrated (FH) 0 .00 0.00 8 .65 z 6.50 
Dehydrated (DH) 1 .25 0.00 8 .12 y 6 .35 
Untreated 0 .00 0.00 7 .93 y 5 .11 

Osmoticum ns^ 
Polyethylene glycol (PEG) 2 .50Cz 0.00 8 .08 yz 7.00 z 
Chitosan plus water (CH) 0 .00 z 0.00 8 .26 yz nd^ 
Citric acid (CA) 0 .00 z 0.00 8 .57 z 5 .37 y 
Water (W) 0 .00 z 0.00 8 .62 z 6 .90 z 
Untreated 0 .00 z 0.00 7 .93 y 5.11 y 

Osmoticum x Hydration Status ns ns ns ns 
PEG-FH 0 .00® 0.00 8 .00 7.01 
PEG-DH 5 .00 0.00 8 .17 7 .99 
CH-FH 0 .00 0.00 8 .60 nd 
CH-DH 0 .00 0.00 7 .94 nd 
CA-FH 0 .00 0.00 9 .00 5 .70 
CA-DH 0 .00 0.00 8 .14 5 .04 
W-FH 0 .00 0.00 9 .00 6 .80 
W-DH 0 .00 0.00 8 .23 7.00 

^General linear models procedure analysis of variance, SAS. 
^ns = not significant at the 5% level. 
"^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

^nd = not determined. 
®Values for interactions are least squares means; different 
letters indicate significant differences at the 5% level. 
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Table 8. Effect of treatment and storage variables on aerobic plate 
counts of soybean, wheat, mungbean, and sesame seeds after 
two weeks of storage. 

Source of LogiO Means of CFU/g seed 
Variation^ Sovbean Wheat Mungbean Sesame 

Hydration Status ns 
Fully Hydrated (FH) 9 .78 z 7 .57 z 8 .32 5.68 z 
Dehydrated (DH) 9 .23 y 2 .88 y 7.85 4 .51 y 
Untreated (UT) 8 .94 y 2 .40 y 7.71 4.68 y 

Osmoticum ns^ 
Polyethylene glycol (PEG) 9 .2lCxy G .32 z 8.25 6.15 z 
Chitosan plus water (CH) 9 .46 yz 5 .42 z 7.48 nd'^ 
Citric acid (CA) 9 .76 2 3 .32 y 8 .25 4.25 X 
Water (W) 9 .59 yz 5 .84 z 8.35 4.90 y 
Untreated (UT) 8 .94 X 2 .40 y 7.71 4.68 y 

Temperature ns ns 
15°C 9. .74 z 4 , .90 8 .12 5.25 z 
5°C 9. .14 y 4 , .92 7.96 4.82 y 

Hydration Status x 
Temperature ns 
FH-15°C 10. .62ez 8, .00 z 8.07 6.37 z 
FH-5°C 8. . 94 y 7, .14 z 8.56 5.00 y 
DH-15°C 9. .07 y 2, .23 y 7.95 4.45 X 
DH-5°C 9. .39 y 3, .53 y 7.76 4.58 X 
UT-15°C 8. .90 y 3, .16 y 7.62 4.32 X 
UT-5°C 8, .97 y 1. .63 y 7.80 5.03 y 

^General linear models procedure analysis of variance, SAS. 
'^ns = not significant at the 5% level. 
<^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

<^nd = not determined. 
^Values for interactions are least squares means,- different 
letters indicate significant differences at the 5% level. 
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Table 9. Effect of treatment and storage variables on total 
coliforms in soybean, wheat, mungbean, and sesame 
seeds after two weeks of storage. 

Source of 
Variation^ 

Logio Means of CFU/g seed 
Sovbean Wheat Munabean Sesame 

Hydration Status ns'-
Fully Hydrated (FH) 7.09 z 7.92 z 7 .39 5.45 z 
Dehydrated (DH) 3.90 y 2.64 y 7 .78 4.37 y 
Untreated (UT) 0.00 X 2.87 y 7 .04 4.34 y 

Osmoticum 
Polyethylene glycol (PEG) 2.28tiy 5.69 yz 7 .22 z 5.77 z 
Chitosan plus water (CH) 6 .54 z 5.52 yz 6 .61 z nd^ 
Citric acid (CA) 7.27 2 3 .41 xy 8 .31 z 4 .10 y 
Water (W) 5.89 z 6.49 z 8 .21 z 4.86 y 
Untreated (UT) 0.00 X 2.87 x 7 .04 z 4 .34 y 

Temperature ns ns ns 
15°C 4.64 4.99 7, .03 y 4.92 
5°C 5.13 5.04 8. .02 z 4 .73 

Hydration Status x 
Temperature ns ns ns 
FH-15°C 7.23® 7.94 z 6. .28 5.90 
FH-5°C 6.95 7.90 z 8, .50 5.00 
DH-15°C 3 .20 2.58 y 7, .93 4.36 
DH-5°C 4.60 2.69 y 7. .64 4.37 
UT-15°C 0.00 2.77 y 6, .49 3.65 
UT-5°C 0.00 2 .97 y 7. .59 5.04 

^General linear models procedure analysis of variance, SAS. 
t>Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

<^nd = not determined. 
dns = not significant at the 5% level. 
^Values for interactions are least squares means; different 
letters indicate significant differences at the 5% level. 
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Table 10. Effect of treatment and storage variables on yeasts 
and molds in soybean, wheat, mungbean, and sesame 
seeds after two weeks of storage. 

Source of Logxo Means of CFU/g seed 
Variation^ Sovbean Wheat Mungbean Sesame 

Hydration Status ns 
Fully Hydrated (FH) 9 .46 z 7.41 z 9.07 5 .64 z 
Dehydrated (DH) 8.44 z 3.62 X 9.69 4 .33 y 
Untreated (DT) 9.10 z 4.10 y 6.38 4 .84 y 

Osmoticum ns^ 
Polyethylene glycol (PEG) 8 .39c 6.52 z 8.30 y 6 .08 z 
Chitosan plus water (CH) 8.81 6.19 z 8.90 yz ndd 
Citric acid (CA) 9.39 3.24 y 10.63 z 4 .28 X 
Water (W) 9.22 6.11 z 9.69 yz 4 .60 xy 
Untreated (UT) 9.10 4.10 y 6.38 X 4 .84 y 

Temperature ns ns 
15°C 9.32 5.55 8.38 y 5 .23 z 
5°C 8 .62 5.17 9.72 z 4 .70 y 

Hydration Status x 
Temperature ns ns 
FH-15°C lo.sesz 7.62 8 .14 6 .28 z 
FH-5°C 8.37 y 7.20 10.00 5 .00 y 
DH-15°C 8.08 y 4.05 9.60 4 .42 X 
DH-5°C 8.80 y 3.19 9.79 4 .24 X 
UT-15°C 9.31 y 3.25 4 .46 4 .48 X 
UT-5°C 8.89 y 4.94 8.30 5 .19 y 

^General linear models procedure analysis of variance, SAS. 
'^ns = not significant at the 5% level. 
^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level. 
Student-Newman-Keuls test. 

^nd = not determined. 
^Values for interactions are least squares means; different 
letters indicate significant differences at the 5% level. 
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Table 11. Effect of treatment and storage variables on aerobic 
plate counts in dehydrated soybean, wheat, mungbean, 
and sesame seeds at two and four weeks of storage. 

Source of Logio Means of CFU/g seed 
Variation^ Soybean Wheat Munabean Sesame 

Storage Time nst" 
2 weeks 9 . 17Cz 2.78 y 7.82 y 4.55 
4 weeks 3 .77 y 4.44 z 8.79 z 4.86 

Osmoticum 
Polyethylene glycol (PEG) 5 .12 y 4.60 z 7.53 w 5.53 z 
Chitosan plus water (CH) 8 .16 z 3.81 z 8.14 X ndc 
Citric acid (CA) 6 .30 yz 1.42 y 8 .58 y 3 .17 y 
Water (W) 7 .78 y 4.31 z 8.87 z 5.25 z 
Untreated (UT) 4 .99 y 3.91 z 8 .43 y 4 .88 z 

Temperature ns ns ns ns 
15°C 6, ,30 3.42 8.34 4.87 
5°C 6. ,64 3.80 8 .28 4 .54 

^General linear models procedure analysis of variance, SAS. 
bns = not significant at the 5% level. 
"^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

dnd = not determined. 
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Table 12. Effect of treatment and storage variables on total 
coliforms in dehydrated soybean, wheat, mungbean, 
and sesame seeds at two and four weeks of storage. 

Source of 
Variation^ 

Logio Means of CFU/g seed 
Soybean Wheat Mungbean Sesame 

Storage Time 
2 weeks 
4 weeks 

ns'-' 
3.12C 
3.19 

ns 
2 . 6 8  
2.81 

7.64 y 
8.76 z 

ns 
4.36 
3.74 

Osmoticum 
Polyethylene glycol (PEG) 
Chitosan plus water (CH) 
Citric acid (CA) 
Water (W) 
Untreated (UT) 

0. .56 y 3 .32 yz 7, .03 X 5 .37 z 
6. .28 z 1 .99 y 8 , .03 y ndi^ 
4. .55 z 0 
o
 
o
 X 8 , .80 z 2 .12 X 

3, .87 z 4 .59 z 8 , .81 z 5.03 yz 
0. 

o
 

in 

y 3 

r
o
 G
O
 

yz 8 , .32 yz 3 .69 y 

Temperature 
15°C 
5°C 

ns 
2.64 
3.67 

ns 
2.56 
2.93 

ns 
8.19 
8 .21 

ns 
4.09 
4 .01 

^General linear models procedure analysis of variance, SAS. 
tins = not significant at the 5% level. 
^Values for main effects are means; different letters (x,y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

find = not determined. 
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Table 13. Effect of treatment and storage variables on yeasts 
and molds in dehydrated soybean, wheat, mungbean, 
and sesame seeds at two and four weeks of storage. 

Source of Lo9lO Means of CFU/g seed 
Variation^ Soybean Wheat Mungbean Sesame 

Storage Time nst» ns ns 
2 weeks 8 .57Cz 3 .72 9.03 z 4.46 
4 weeks 3 .23 y 4.22 8.75 y 4.72 

Osmoticum 
Polyethylene glycol (PEG) 4 .75 y 5.03 z 7.76 X 5.37 z 
Chitosan plus water (CH) 7 .96 z 4.35 z 9.00 y nd^ 
Citric acid (CA) 6 .21 yz 1.04 y 10.00 z 2.91 y 
Water (W) 6 . 03 yz 4.77 z 10.00 z 5.07 z 
Untreated (UT) 4 .55 y 4.65 z 7.69 X 5.02 z 

Temperature ns ns ns 
15°C 5 . 33 y 4.08 8.63 4 .70 
5°C 6. 48 z 3.86 9.15 4 .48 

^General linear models procedure analysis of variance, SAS. 
bns = not significant at the 5% level. 
(^Values for main effects are means; different letters (x,y,z) 

indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls test. 

^nd = not determined. 
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OSHOCONDXTXOIIED SEEDS AS A FOODSTUFF: 
MICROBIOLOGICAL SAFETY, NUTRITIONAL STATUS, 
AND SENSORY PROPERTIES OF SPROUTED SEEDS 

A paper to be submitted to The Journal of Food Science 

Julie M. Goldman!, Amadu D. Ayebo^, Mark H. Love^, and James S, Dickson^ 

Abstract 

Soybean and wheat seeds were surface-sterilized with NaOCl or EtOH 

or left untreated. Seeds then were hydrated in polyethylene glycol, 

citric acid, or water. Following hydration, seeds were treated with 

calcium propionate or left untreated. Seeds were then dehydrated to 

complete the osmoconditioning process. The crops were analyzed as dry, 

unsprouted seeds and as 48-hour sprouts. Citric acid and NaOCl had an 

antimicrobial impact on unsprouted seeds, but sprouted seeds had counts 

up to 105 higher than unsprouted seeds regardless of treatment. The 

calcium propionate treatment reduced total coliform counts in wheat by a 

factor of 10, but did not affect aerobic plate counts or yeast and mold 

counts. Some of the microbial counts declined after 16 weeks of 4°C 

storage. Sprouting resulted in increased phytate in both soybean (40%) 

and wheat (10%). Sprouts from osmoconditioned and untreated seeds were 

rated similarly in sensory analyses. 

^Graduate Research Assistant, Iowa State University, Ames, lA 

^Research Scientist, CIREH, University of Iowa, Iowa City, lA 

^Associate Professors, Iowa State University, Ames, lA 
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Introduction 

Seed osmoconditioning is a technique traditionally used to enhance 

field production of crops. The controlled hydration and dehydration 

process yields a product that germinates more uniformly and more 

quickly when subsequently exposed to the sprouting environment 

(Bradford, 1986). In a study of osmoconditioning for foodstuffs (Goldman 

et al., unpublished), sprouting time decreased when seeds were 

osmoconditioned. Furthermore, osmoticum and seed moisture status 

affected microbial levels. The osmotica polyethylene glycol (for 

soybean and mungbean) and citric acid (for wheat and sesame) had some 

antimicrobial activity when compared with water or chitosan plus water 

as osmotica. If seeds were dehydrated following hydration, microbial 

counts were lower than in seeds remaining fully-hydrated. Phytate 

content of seeds increased with the initial hydration but decreased to 

pre-hydration levels after dehydration. 

In this study, osmoconditioned seeds were sprouted for foodstuff 

use and assessed in terms of microbiological safety, nutritional status, 

and sensory properties. 

Microbiological safety is of interest because sprouting methodology 

has an impact on microbial activity (Sawyer et al., 1985; and Marero et 

al., 1988). Phytate content was determined because of its 

antinutritional activity and the consequent impact on human nutrition 

(Torre et al., 1991; Bea et al., 1984; Heaney et al., 1991; and Hurrell 

et al., 1992). And, osmoconditioned and untreated sprouts were assessed 

to measure their sensory attributes. 
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Materials and Methods 

Seed Treatment 

Hard red winter high protein wheat seeds were obtained from 

Arrowhead Mills (Hereford, TX) in May 1994 and were stored at room 

temperature until treatments were applied in June 1994. For the sensory 

analysis only, hard red spring high protein wheat seeds were obtained 

from Bob's Red Mill (Milwaukie, OR) in August 1994 and stored at room 

temperature until treated in September, 1994. 'Vinton 81' soybean 

seeds, grown in Iowa and harvested in the fall of 1992, were stored in 

sealed plastic containers at 4°C until used. 

Seeds were surface-sterilized by immersion in NaOCl or EtOH. Seeds 

were immersed in the 2000 ppm NaOCl (Clorox, Oakland, CA) solution for 

10 min, followed by three 30 s rinses in distilled water. For the 95% 

EtOH treatment, seeds were immersed for 30 s, followed by three 30 s 

rinses in distilled water. Prior testing indicated that these 

treatments did not result in reduced sprouting performance. 

Imbibition media, hereafter referred to as osmotica, included: 

polyethylene glycol 8000 (Sigma Chemical Co.) at 250 g/kg distilled 

water, hereafter referred to as PEG; a 0.05 M citrate buffer at pH 4.4 

prepared from citric acid monohydrate and sodium citrate dihydrate, 

referred to as CA; and distilled water, referred to as W. 

Treatment combinations were assigned randomly to quantities of 

150 g seed. Following surface-sterilization, seeds were placed in 

Ziploc (Dow Corning, Midland, MI) 2000 ml storage bags of 1.75 mil 

thickness. Three hundred ml of the assigned osmoticum was added to each 
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bag, and the bags were randomly arranged in a dark growth chamber at 

25°C. The CA and W treatments were applied for 4 hr (soybean) or 6 hr 

(wheat) while the PEG treatments were 16 hr in length. Following 

hydration, all bags were drained and the seeds were rinsed once with 300 

ml distilled water. One additional treatment was then applied, 

consisting of seed immersion in 1000 ppm calcium propionate (Niacet, 

NY) for 10 min without subsequent rinsing. 

Hydrated seeds were placed on absorbent toweling for 30 min to 

surface-dry. Seeds were dehydrated in a food dehydrator (Harvest Maid 

Model 2400, Alternative Pioneering Systems, Chaska, MN) at 40°C until 

the seed moisture content was approximately equal to original moisture 

content, a process requiring 9 hr for soybean and 4-5 hr for wheat. 

After the seeds had cooled to room temperature, a sample from each 

treatment group was withdrawn for analysis. The remaining seeds of each 

group were placed in sterile 120 ml Whirlpak bags (Nasco, Janesville, 

WI) and stored in sealed rigid plastic containers at 4°C for 16 weeks, 

at which time sampling was performed. Samples for phytate analysis were 

withdrawn at 4 weeks in addition to the 16 week sampling. The 

experiment was replicated at one week intervals for a total of 3 

replications. 

Moisture Content 

To verify the degree of hydration and dehydration of seeds, 

moisture content was determined. Samples of 10 seeds were placed on 

Kimwipes (Kimberly-Clark, Roswell, GA) until surface-dry, then weighed 

to determine fresh weight. After being dried to constant weight at 
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103°C, samples were weighed again to determine dry weight. Moisture 

content was computed as a percentage, on a fresh weight basis. 

Sprouting 

Quantities of 20 to 30 g seed were placed in clear 450 ml plastic 

salad bar containers (Ecoware, U.S.). Seeds were soaked in distilled 

water for 8 hr at 25°C in a dark growth chamber. Covers of the 

containers were left slightly ajar. Following the soaking period, the 

water was drained and the seeds were rinsed once with 150 ml distilled 

water. Thereafter, rinsing and draining was done at 8 a.m., 12 p.m., 

and 4 p.m. After 36 hours had elapsed, fluorescent lighting was applied 

at 40 microeinsteins m"2 sec~^. Forty-eight hours from the start of the 

soaking period, sprouts were given a final rinse and samples were taken 

for microbiological and phytate assessment. 

Microbiological 

Ten gram samples were placed in sterile 60 ml Whirlpak bags for 

microbiological quality determinations. Samples were placed in peptone 

buffer and processed in a stomacher (model 400 Mark II, Tekmar, 

Cincinnati, OH) at normal speed for 120 s. Appropriate serial dilutions 

in buffered peptone water (Accumedia) were plated via a spiral plater 

(Model D, Spiral Systems, Cincinnati, OH) onto duplicate plates of 

tryptic soy agar (TSA) for aerobic plate counts (APC), violet red bile 

agar (VRBA) for total coliform counts (TC), and potato dextrose agar 

(PDA) for yeasts and molds (YM). The plates were incubated as follows: 

TSA at 32°C for 48 hr, VRBA at 37°C for 24 hr, and PDA at 25°C for 120 
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hr. Plates were counted visually by using methods appropriate for spiral 

plates (Peeler and Maturin, 1992) . 

Some counts were recorded as "too many to count" in plates where 

the colonies exceeded the manual counting capability; numeric values 

for these samples were obtained by the following formula: 10,000 x 

1/greatest dilution. For data analysis, the arithmetic mean of the 

duplicate plates was computed and then converted to a logio mean by the 

following formula: logio mean = logio (arithmetic mean + 1.00). 1.00 

was added to the arithmetic mean to allow the use of zero counts. Counts 

were reported as logxo means of colony forming units (CPU)/g of seed. 

Phytate 

Samples sufficient to supply 10 g dry matter were placed in 60 ml 

sterile Whirlpak bags, frozen, and stored at -18°C. Following 

freeze-drying {FreezeDry-5, Labconco, Kansas City, MO), samples were 

ground in a coffee grinder (Braun, Inc., Lynnfield, MA) for 20 s and 

sieved through a 20 mesh screen. Phytate analyses were performed 

according to the colorimetric method of Vaintraub and Lapteva (1988), 

which is a modification of the method of Latta and Eskin (1980) . 

Sensory Analysis 

A plan for the sensory analysis study was submitted to and approved 

by the Iowa State University Human Subjects Research Committee before 

implementation of the study. Panelists signed an informed consent 

statement prior to participation. 

Soybean and wheat seeds used for sensory analysis received one of 
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the following treatments, using food-grade constituents and equipment: 

1) NaOCl surface-sterilization with CA-treatment and dehydration; 2) 

CA-treatment and dehydration; 3) NaOCl surface-sterilization with 

W-treatment and dehydration; 4) W-treatment and dehydration; and 5) 

control --no sterilization and no osmoconditioning. Polyethylene 

glycol was not used as an osmoticum in the sensory portion of this study 

because it does not have GRAS status for an osmoconditioning-like 

process. 

Quantities of approximately 100 g (dry weight basis) of soybean 

seeds and 50 g of wheat seeds (dry weight basis) were then placed in 

sterile 250 ml glass jars (Ball Co., Muncie, IN). The open jar tops 

were covered with cheesecloth secured by the screw bands and 200 ml 

water was added to each jar. Seeds were soaked for 8 hr at 25°C in a 

fermentation cabinet (Model 505-SS, National Manufacturing Company, 

Lincoln, NB) from which light was excluded. Following the 8 hr soaking 

period, the water was drained from the jars and the seeds were rinsed 

once with 200 ml water. Jars were placed on their sides in the chamber. 

Sprouts were thereafter rinsed and drained at 8 a.m., 12 p.m., 4 p.m, 

and 8 p.m. After 36 hours had elapsed, wheat sprouts were exposed to 

fluorescent light, and after a total of 48 hr had elapsed, the wheat 

sprouts were given a final rinse. 

Soybean sprouts, following the final rinse at 48 hr, were steamed 

for 3 min and allowed to cool to room temperature prior to being tasted. 

Prior to the sensory analyses by the trained panel, a group of 

experienced sensory panelists tasted soybean and wheat sprouts. The 



www.manaraa.com

61 

group recommended that the crops be rated on the characteristics of 

"color", "beany flavor", and "nutty flavor" for soybean sprouts, and 

"sweetness", "firmness", and "chewiness" for wheat sprouts. 

Samples were presented to panelists in a controlled environment 

sensory facility with individual booths. At each session, 5 coded 

samples of soybean sprouts were presented, followed by a 10 minute 

break. Five coded samples of wheat sprouts were then presented. The 

14 trained panelists used a descriptive analysis technique for flavor 

and texture characteristics, scaling attributes on an unstructured 15 cm 

line scale. 

Statistical Analysis 

Statistical analyses for phytate and microbiological data were 

performed by using ANOVA (analysis of variance) produced by the GLM 

(general linear models) procedure in SAS, version 6.07. Each crop was 

analyzed separately. 

The microbiological data were analyzed to determine activity among 

treated seeds prior to storage, with osmoticum as the whole-plot factor 

and surface-sterilant, calcium propionate treatment, sprouting stage, 

and all interactions as the split-plot factors in a split-plot design. 

The impact of storage on microbiological activity was also analyzed as a 

split-plot design, with osmoticum (CA and W only) as the whole-plot 

factor and storage time, calcium propionate treatment, sprouting stage, 

and all interactions as the split-plot factors. For phytate, osmoticum 

(CA and W only) was the whole-plot factor. Storage time, sprouting 

stage, and the interactions were split-plot factors in a split-plot 
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design. Replications within osmoticum was designated as the whole-plot 

error term, and the GLM procedure calculated the appropriate split-plot 

error terms. 

Factors and interactions with a p value of <. 0.05 were considered 

significant. Means separations for main effects were conducted with the 

Student-Newman-KeuIs (SNK) test. Interaction means were compared using 

p values generated by the PDIFF statement in SAS, using least squares 

means. 

Sensory data were also analyzed using ANOVA generated by GLM. Each 

sensory attribute for each crop was analyzed separately. The experiment 

was a 2 (surface sterilants) x 3 (osmotica) x 13 (panelists) factorial 

in a completely randomized design, with 3 replications for each 

treatment combination. The error term in each instance was 

automatically calculated with the GLM procedure. 

Results and Discussion 

Microbiological Activity 

Table 1 illustrates the microbial activity in treated seeds before 

storage. Osmoticum was not a significant factor in this analysis. With 

regard to surface-sterilants, NaOCl-treated seeds had lower counts than 

other treatments for aerobic plate counts and total coliform counts of 

soybean and total coliform counts and yeast and mold counts of wheat. 

However, interactions of surface sterilant by sprouting stage for 

soybean indicate that the effect was on unsprouted seeds only. Since 

microbial cells and spores are present within seeds as well as on the 

surface (Caetano-Anolles et al., 1990; and Mundt and Hinkle, 1976), the 
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endogenous population within seeds typically cannot be removed by 

chemical surface-sterilization (Caetano-Anolles et al., 1990). 

Sprouting resulted in a large increase in counts in all microbial 

categories for both crops. 

Calcium propionate had an impact in only one instance -- reduced 

total coliform counts in wheat. The interactions of all three factors 

(osmoticum, surface sterilant, and sprouting stage) were not 

significant, indicating that incorporating a surface sterilant with an 

antimicrobial osmoticum did not further enhance antimicrobial activity, 

even among unsprouted seeds. 

For the analysis that included storage as a factor (Table 2), 

surface-sterilized seeds were not included, since the impact of the 

sterilants would be expected to be immediate rather than following 

storage. After 16 weeks of storage, calcium propionate-treated seeds 

that had been osmoconditioned with CA and W were sampled, as were 

untreated seeds that had not been osmoconditioned. 

As Table 2 illustrates, CA-treated soybeans had lower total 

coliform counts than W-treated seeds, and the osmoticum by sprouting 

stage interaction indicates that the impact was on unsprouted seeds. 

Unsprouted CA-treated seeds had counts comparable to untreated 

unsprouted seeds. Sprouting resulted in large increases in microbial 

counts. Storage had a beneficial effect in two cases,- aerobic plate 

counts in soybean and total coliform counts in wheat were lower after 16 

weeks in storage. This was true for both unsprouted and sprouted seeds, 

since the interactions of storage time and sprouting stage were not 



www.manaraa.com

64 

significant. The osmoticum by storage time interaction for total 

coliform counts in wheat illustrates a substantial decline for the 

CA-treated seeds at 16 weeks, but no decrease for the W-treated seeds 

and an increase in the untreated seeds. The CA-treated wheat at 16 

weeks had total coliform counts comparable with the lowest value for 

untreated seeds, at 0 weeks. Calcium propionate did not exhibit an 

antimicrobial effect (not illustrated in this table). 

The counts for both unsprouted and sprouted seeds are comparable to 

counts reported in the literature (Richter et al., 1993; Patterson and 

Woodburn, 1980). The high counts associated with sprouts do not 

typically indicate a health concern, since pathogenic bacteria such as 

salmonellae are not commonly found in plant foods (Splittstoesser et 

al., 1983) . 

In summary, some degree of microbial control in unsprouted seeds is 

achieved with the application of NaOCl prior to osmoconditioning and the 

use of CA as an osmoticum. Microbial control in sprouted seeds is more 

elusive because control of the endogenous internal microbial population 

is more difficult. However, the instances of lower counts following 

storage suggest that combining osmoconditioning treatments with a 

storage treatment could result in seeds and sprouts with lower microbial 

counts. Because seeds were stored in sealed containers with minimal gas 

exchange, the reduced counts may have been the consequence of a modified 

atmosphere. Seeds respire, and they consume O2 and produce CO2. 

Atmospheres with increased amounts of CO2 (up to about 10%) extend the 

storage life of fruits, meats, and other products by, among other 
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actions, inhibiting microbial growth and development (Jay, 1991), which 

may have been partly responsible for the reduced counts noted here. 

Phytate 

After 0, 4, and 16 weeks of storage of osmoconditioned seeds, 

neither osmoticum (CA and W only) nor storage time had an impact on 

phytate content (Table 3). However, sprouting had a significant impact 

on phytate content, with soybean increasing 40% and wheat 10%. 

Chavan and Kadam (1989) and Salunkhe and Kadam (1989) reported that 

several crops exhibited a reduction in phytate as a consequence of 

sprouting. However, several of the studies that reported reductions in 

phytate cited lengthy sprouting times, such as 8 days for peas (Beal et 

al., 1984), 6 days for lupin (Dagnia et al., 1992), and 6 days for 

lentils (Vidal-Valverde, 1994). In contrast, typical sprouting times 

for fresh sprouts are 2 days for wheat, 3-4 days for soybeans, lentils, 

and peas, and 2-5 days for mungbeans, because longer periods have a 

negative impact on palatability (Larimore, 1975; and Blanchard, 1975). 

Several studies reported the occurrence of phytate synthesis during the 

early stages of hydration and sprouting (Sutardi and Buckle, 1985; 

Mandal and Biswas, 1970; and Organ et al., 1988). Since their timeframe 

corresponded with the 48-hour sprouting period employed in this study, 

phytate synthesis may be responsible for the increase in phytate 

reported in this study. 

In addition, several of the studies citing reductions measured the 

phytate in the cotyledons only, despite the fact that phytate is present 

in other parts of the seedling and the entire seedling is usually 
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consumed when sprouts are used for foodstuffs. 

In conclusion, an accurate assessment of phytate content in 

sprouted seeds requires consideration of the sprouting time and the 

anatomical components of the seed or seedling. Shorter sprouting times 

may contribute to improved palatability, but the lack of a decrease in 

phytate and the potential for increased phytate content poses a 

nutritional problem. 

Sensory 

When analyzed by the trained panel, sensory properties did not 

differ among treatments (Tables 4 and 5). Panelists commented on the 

highly palatable nature of the soybean sprouts, and they perceived the 

"nutty flavor" of the sprouts to be desirable. Several panelists 

commented that they would consider using the wheat sprouts in salads or 

casseroles, while several other panelists disliked the intense 

"saccharin-like sweetness" of the wheat sprouts. 

Conclusions 

The technique of seed osmoconditioning, which enhances sprouting, 

also can be utilized to reduce microbial counts in dehydrated seeds if 

seeds are surface-sterilized with NaOCl or hydrated with PEG and CA. 

However, microbial control in sprouted seeds may require a combination 

of osmoconditioning treatments and storage in a modified atmosphere. 

Since panelists did not rate osmoconditioned and untreated seeds 

differently, undesired sensory changes would not be expected with any of 

the treatments employed in this study. The increase in the antinutrient 
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phytate indicates a need for an enzymatic assessment of phytate 

metabolism in sprouted seeds. 
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Table 1. Effect of treatments on aerobic plate counts (APC), total 
coliforms (TC), and yeasts and molds (YM) in soybean and 
wheat seeds and sprouts before storage. 

Source of Logio Means of CFU/g seed 
Variation^ SOYBEAN WHEAT 

APC TC YM APC rc YM 
Osmoticum nsl^ ns ns ns ns ns 
Polyethylene 
glycol 7 . 1 9 C  6  . 0 1  6 . 8 4  6 . 9 0  5  . 7 1  6 . 5 8  
Citric acid 7 . 5 3  5  . 9 1  6 . 7 3  6 . 7 9  5  . 3 0  6 . 1 6  
Water 7 . 4 4  6  . 7 1  7 . 1 9  7 . 0 2  5  . 5 5  6 . 5 5  

Surface 
Sterilant ns ns 
NaOCl (NaOCl) 6 . 6 1  y  5  . 1 8  y  6 . 5 0  6 . 5 9  4  . 8 1  y  5 . 9 7  y  
Ethanol (EtOH) 7 . 5 2  z 7 . 0 0  z 7 . 0 2  7 . 0 2  5 . 8 2  z 6.48yz 
Untreated (UT) 8 . 0 3  z 6 .48 z 7 . 2 4  7 . 0 9  5 . 9 8  z 6 . 8 3  z 

Calcium 
Propionate ns ns ns ns ns 
Present 7.47 6 . 3 6  6 . 8 8  6 . 8 0  5 .04 y  6 . 4 0  
Absent 7 . 3 0  6 . 0 7  6 . 9 6  7 . 0 0  6 . 0 2  z 6 .45 

Sprouting 
Stage 
Unsprouted (US) 5 . 6 3  y  3 . 3 9  y  5 . 2 6  y 4.94 y 2 .52 y  4.95 y  
Sprouted (S) 9 . 2 1  z 8 . 9 8  z 8.58 z 8 . 8 6  z 8 .55 z 7 . 9 1  z 

Surface Sterilant X 
Sprouting Stage ns ns ns ns 
NaOCl X US 4.24dx 1  .33 X 4  . 2 6  4.43 1  . 2 1  4.05 
NaOCl X S 9 . 1 2  z 9 . 0 2  z 8 . 7 5  8 . 7 5  8 .41 7 . 8 8  
EtOH X US 5 . 7 3  xy 4 . 6 8  y  5.56 5.15 3 .33 5 . 0 8  
EtOH X S 9 . 3 2  z 9 . 2 0  z 8.48 8 . 9 0  8 . 6 2  7 . 8 9  
UT X US 6 . 9 3  y  4 .24 y  5 . 9 7  5.24 3 . 0 2  5 . 7 0  
UT X S 9 . 1 9  z 8 . 7 3  z 8 . 5 2  8 . 9 4  8 . 6 2  7 . 9 5  

^General linear models procedure analysis of variance, SAS. 
^ns = not significant at the 5% level. 
^Values for main effects are means; different letters (x,y,z) indicate 

statistically significant differences at the 5% level, Student-
Newman-Keuls test. 

^Values for interactions are least squares means; different letters 
indicate statistically significant differences at the 5% level. 
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Table 2. Effect of treatments on aerobic plate counts (APC), total 
coliforms (TC), and yeasts and molds (YM) in soybean and 
wheat seeds and sprouts before and after storage. 

Source of Logio Means of CFU/g seed 
Variatiopa SOYBEAN WHEAT 

APC TC YM APC r c  YM 
Osmoticum nst) ns ns ns ns 
Citric acid (CA) 7 .00 5.13Cy 5.98 6.62 4 .62 6 .56 
Water (W) 7 .31 7.18 z 7.18 6.16 5 .11 6.66 
Untreated (UT) 5 .04 3.39 X 5.46 6.23 3 .88 5.90 

Storage Time ns ns ns ns 
0 Weeks 7 .96 z 6.25 7.01 6.70 5 .40 z 6.51 
16 Weeks 5 .80 y  5.24 5.86 6 .06 4 .09 y  6.49 

Sprouting Stage 
Unsprouted 5 .84 y  3.51 y  4.90 y 5.14 y 2 .48 y  5.31 y 
Sprouted 7 .91 z 8 .17 z 8.07 2 7.72 z 7 .20 z 7.83 z 

Osmoticum x 
Sprouting Stage ns ns ns ns ns 
CA X Unsprouted 5 .83° 2.01 X 3.80 5.32 2 .68 5.14 
CA X Sprouted 8 .17 8.26 z 8 .15 7.91 6 .57 7.99 
W X Unsprouted 6 .55 6.14 y  6.29 4.86 2 .53 5.63 
W X Sprouted 8 .07 8.20 z 8.07 7.46 7 .69 7.69 
UT X Unsprouted 4 .44 1.23 X 4.34 5.34 1 .96 4.99 
UT X Sprouted 6 .25 7.71 z 7.71 8.00 7 .70 7.71 

Osmoticum x 
Storage Time ns ns ns ns ns 
CA X 0 Weeks 8 .23 5.55 6.64 6.83 6 .62 y  6.87 
CA X 16 Weeks 5 .77 4.72 5.32 6.40 2 .63 X 6.26 
W X 0 Weeks 8 .42 7.90 7.89 7.00 4 .99 y  6.63 
W X 16 Weeks 6 .20 6 .45 6.46 5.34 5 .23 y  6 .70 
UT X 0 Weeks 5 .00 2.46 4.94 5.02 2 .16 X 4.58 
UT X 16 Weeks 5 .06 3 .86 5 .72 6.83 4 .74 y  6 .56 

^General linear models procedure analysis of variance, SAS. 
t>ns = not significant at the 5% level. 
^Values for main effects are means; different letters (w,y,x) indicate 
statistically significant differences at the 5% level, Student-
Newman-Keuls test. 

^Values for interactions are least squares means; different letters 
indicate statistically significant differences at the 5% level. 
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Table 3. Effect of osmoconditioning and sprouting on phytate 
concentrations in soybean and wheat seeds and sprouts. 

Source of 
Variation^ 

Phytate Concentration (g/lOOg dry seed) 
Soybean Wheat 

Osmoticum 
Citric acid 
Water 

nst" 
1.23 
1.23 

ns 
0.77 
0.72 

Storage Time ns 
1.24 
1.23 
1.22 

ns 
0.76 
0.74 
0.73 

0 Weeks 
4 Weeks 
16 Weeks 

Sprouting Stage 
Unsprouted 
Sprouted (48 hrs) 

l.OSCy 
1.43 z 

0.71 y 
0.78 z 

^General linear models procedure, SAS. 
bns=not significant at the 5% level. 
^Values are means of two osmotica, 3 storage times, and 3 
replications; different letters (y,z) indicate statistically 
significant differences at the 5% level, Student-Newman-Keuls test. 
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Table 4. Effect of surface-sterilization and osmoconditioning 
on sensorv attributes of sorouted sovbeans. 

Source of Mean Scores^ 
Variation^ Colore Beanv Flavor'^ Nuttv Flavor^ 

Surface Sterilant nsf ns ns 
NaOCl 7.21 4.76 7.22 
Untreated 6.80 4.49 7.45 

Osmoticum ns ns ns 
Citric acid 7.20 4.68 7.65 
Water 6.73 4.34 7.09 
Untreated 6.95 4.97 7.30 

^Values are means of three replications, as measured on a 15 cm scale. 
^General linear models analysis of variance, SAS. 
^Color scale ranged from light yellow (1 cm) to beige (14 cm) . 
^Beany flavor scale ranged from none (0 cm) to strong (14 cm). 
SNutty flavor scale ranged from none (0 cm) to strong (14 cm). 
fns = not significant at the 5% level. 

Table 5. Effect of surface-sterilization and osmoconditioning 
on sensorv attributes of sorouted wheat. 

Source of Mean Scores^ 
Variationt> Firmness^^ Sweetness<i ChewinessS 

Surface Sterilant nsf ns ns 
NaOCl 7.58 6.70 8.33 
Untreated 8.43 6.98 8.52 

Osmoticum ns ns ns 
Citric acid 7.60 6.37 8.47 
Water 8.19 7.40 8.64 
Untreated 8.87 6.82 8.02 

^Values are means of three replications, as measured on a 15 cm scale. 
^General linear models analysis of variance, SAS. 
^Firmness scale ranged from soft (1 cm) to firm (14 cm). 
(^Sweetness scale ranged from none (0 cm) to strong (14 cm). 
schewiness scale ranged from very little remaining in mouth (0 cm) 
to almost all remaining in mouth (14 cm). 
fns = not significant at the 5% level. 
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OSMOCONDITIONED SEEDS AS A FOODSTUFF: 
PHYTATE CONTENT AND PHYTASE ACTIVITY IN THE SEEDS 

AND SPROUTS OF SOYBEANS AND WHEAT 

A paper to be submitted to The Journal of Food Science 

Julie M. Goldman^ and Mark H. Love2 

Abstract 

The phytate content of soybean and wheat seeds and sprouts was 

determined following an osmoconditioning process (hydration followed by 

dehydration to original moisture content) and during a subsequent 

144-192 hr sprouting period. Untreated seeds were also sprouted, and 

phytate content determined. Phytase activity was determined at 

corresponding sampling times. Phytate in wheat seeds and sprouts 

remained fairly constant during osmoconditioning and sprouting, whereas 

phytase activity increased throughout the sprouting period. Phytate in 

soybean seeds reached a maximum content after 8 hr of sprouting, and did 

not decrease to a lower content until 192 hr of sprouting. This 

decrease corresponded with a significant increase in phytase activity. 

Osmoconditioned and untreated sprouts did not differ with regard to 

phytate content or phytase activity. 

Introduction 

Seed osmoconditioning is a technique traditionally used to enhance 

field production of crops. The controlled hydration and dehydration 

^Graduate Research Assistant, Iowa State University, Ames, lA 

^Associate Professor, Iowa State University, Ames, lA 
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process yields a product that germinates more uniformly and more 

quickly when subsequently exposed to the sprouting environment 

(Bradford, 1986) . In a study of the impact of osmoconditioning on 

foodstuffs, it was determined that for seeds of soybean, wheat, mung 

bean, and sesame, the time to achieve 50% germination decreased and 

osmoticum and moisture status impacted microbial levels. Phytate content 

in soybean, mung bean, and sesame increased with hydration but returned 

to near the original content following dehydration (Goldman et al., 

unpublished). 

The assessment of phytate content was deemed important because 

phytate binds divalent cations such as iron, zinc, and calcium, and thus 

has an antinutritional impact. Sprouting of seeds is reported to result 

in decreased levels of phytate (Salunkhe and Kadam, 1989; 

Vidal-Valverde, 1994; Kumar and Chauhan, 1993; Sattar et al., 1990; 

Dagnia et al., 1992; and Bartnik and Szafranska, 1987), presumably 

because of the increased activity of the hydrolytic enzyme phytase 

(myoinositol hexaphosphate phosphohydrolase E.G. 3.1.3.8). Phytase 

activity has been reported to increase concomitantly with decreases in 

phytate (Eskin and Wiebe, 1983; and Bartnik and Szafranska, 1987). 

However, phytate synthesis has been noted during the soaking 

of soybeans for tempeh production (Sutardi and Buckle, 1985) and during 

the early stages of sprouting of mung beans (Mandal and Biswas, 1970), 

suggesting that both synthesis and hydrolysis occur in sprouting seeds, 

depending on the crop and the extent of sprouting. Furthermore, in a 

follow-up to the original study of osmoconditioning for foodstuff 
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production, it was determined that phytate content in osmoconditioned 

seeds increased by 40% in soybean and 10% in wheat following a 48-hour 

sprouting period (Goldman et al., unpublished). 

In this continuing study of osmoconditioning, an assessment of 

phytate content and phytase activity was conducted with the following 

objectives: 1) determine phytate content of seeds during the 

osmoconditioning process; 2) determine phytate content at intervals 

throughout a lengthy sprouting period; 3) compare osmoconditioned and 

untreated seeds during the sprouting process; and 4) measure enzymatic 

hydrolytic activity (phytase) during the the entire timecourse of 

osmoconditioning and sprouting. 

Materials and Methods 

Seed Treatment 

Hard red winter high protein wheat seeds were obtained from 

Arrowhead Mills (Hereford, TX) in May 1994 and stored at room 

temperature until treatments were applied in February 1995. 'Vinton 81' 

soybean seeds, grown in Iowa and harvested in the fall of 1992, were 

stored in sealed plastic containers at 4°C until used. 

All seeds were surface-sterilized in 2000 ppm NaOCl (Clorox, 

Oakland, CA) by immersion of seeds for 10 minutes, followed by three 

30 s rinses in deionized water. Seeds to be osmoconditioned were 

surface-sterilized immediately prior to hydration. Untreated seeds were 

surface-sterilized immediately prior to the sprouting procedure. 

Six 300 g samples from each crop were randomly given treatment 

(osmoconditioned or untreated) and replication (3) assignments. Samples 
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were withdrawn, placed in sterile 60 ml Whirlpak bags (Nasco, Fort 

Atkinson, WI), and frozen. After surface-sterilization, seeds receiving 

the osmoconditioning treatment were placed in Ziploc (Dow Corning, 

Midland, MI) 2000 ml storage bags of 1.75 mil thickness. Six 

hundred ml of the osmoticum (deionized water) was added to each bag, and 

bags were randomly arranged in a dark fermentation cabinet (Model 

505-SS, National Manufacturing Company, Lincoln, NB) at 25°C. After 5 

hr (soybean) or 6 hr (wheat), the bags were drained of water and the 

seeds were rinsed once with 600 ml deionized water. Samples were taken 

at this time. 

Hydrated seeds were placed on absorbent toweling for up to 3 0 min 

to surface-dry. Seeds were dehydrated in a food dehydrator (Harvest 

Maid Model 2400, Alternative Pioneering Systems, Chaska, MN) at 40°C 

until the seed moisture content was approximately equal to original 

moisture content, a process that required 9 hr for soybean and 4 to 5 hr 

for wheat. After the seeds cooled to room temperature, samples were 

taken. 

Moisture Content 

To verify the degree of hydration and dehydration of seeds, 

moisture content was determined. Samples of 10 seeds were placed on 

Kimwipes (Kimberly-Clark, Roswell, GA) until surface-dry, then weighed 

to determine fresh weight. After being dried to constant weight at 

103°C, samples were weighed again to determine dry weight. Moisture 

content was computed as a percentage, on a fresh weight basis. 
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Sprouting 

Quantities of approximately 150 g seeds (dry weight basis) were 

placed in sterile 1000 ml glass jars (Ball Co., Muncie, IN) covered with 

cheesecloth secured by the screw bands. Seeds were soaked in deionized 

water for 8 hr (soybeans) and 10 hr (wheat) at 25°C in a fermentation 

cabinet (Model 505-SS, National Manufacturing Company, Lincoln, NB) from 

which light was excluded. Following the soaking period, the water was 

drained and seeds were rinsed once with deionized water. Jars were 

placed on their sides in the chamber. Sprouts were thereafter rinsed 

and drained at 8 a.m., 12 p.m., and 4 p.m. 

Samples of untreated seeds were taken at 0 hr (prior to any 

hydration), and for comparison purposes the 0 hr sampling time for 

osmoconditioned seeds was the sampling that occurred following 

dehydration. Untreated and osmoconditioned seeds were both sampled at 8 

or 10 hr (following the soak period), and at 24, 48, 96, 144, and 192 

hours of the sprouting period. Wheat samples were only taken through 

144 hr due to visible microbial infestation at 192 hr. 

Phytate 

Samples sufficient to supply 10 g dry matter were placed in 60 ml 

sterile Whirlpak bags, frozen, and stored at -18 C. Following 

freeze-drying (PreezeDry-5, Labconco, Kansas City, MO), samples were 

ground in a coffee grinder (Braun, Inc., Lynnfield, MA) for 20 s and 

sieved through a 20 mesh screen. Phytate analyses were performed 

according to the colorimetric method of Vaintraub and Lapteva (1988), 

which is a modification of the method of Latta and Eskin (1980). 
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Statistical Analysis 

Statistical analyses for phytate data were performed using ANOVA 

(analysis of variance) produced by the GLM (general linear models) 

procedure in SAS, version 6.07. Soybeans and wheat were analyzed 

separately. In experiment #1, phytate content and phytase activity of 

seeds and sprouts were analyzed throughout the full timecourse, 

including the osmoconditioning. The experimental design was completely 

randomized, with sampling time as the factor and replications within 

sampling time as the error term. In experiment #2, osmoconditioned and 

untreated seeds were compared, beginning at 0 hr of the sprouting 

process. The design was a two-way factorial, with sampling time and 

osmoticum as factors. Factors and/or interactions with a p value of < 

0.05 were considered significant. 

Phytase 

The starting material for both soybeans and wheat was the 

freeze-dried, ground wholemeal prepared for the phytate analyses. 

For wheat, 20 ml of 0.2 M acetate buffer at pH 5.1 was added to l g 

of wholemeal sample. The mixture was stirred with a glass rod to insure 

moistening of all dry material, centrifuged for 15 min at 5000 rpm, and 

filtered through Whatman #1 filter paper (Whatman International Ltd., 

England). For the enzyme reaction mixture, 4 ml of filtrate was added to 

4 ml of pre-warmed substrate, which was 1.3 g sodium phytate in 1000 ml 

0.2 M acetate buffer. This concentration approximates 1.3 mM phytate, 

taking into account the approximately 0.8 g phytate present in every 100 

g of wholemeal. For the blank, 4 ml of the same filtrate was added to 4 
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ml of pre-warmed 0.2 M acetate buffer. Samples were withdrawn at time 

zero, and reaction tubes and blank tubes were incubated in a 55°C water 

bath for l hr, at which time aliquots were again withdrawn for 

phosphorus determination. A timecourse test was conducted, and it 

confirmed that the reaction was linear over the 1 hr test period. 

Phosphorus was determined by a modification of the ammonium 

molybdate method of Lowry and Lopez (1946). The standard curve was 

prepared with 0 to 6 mg/L of P as KH2PO4. Sample aliquots were 

appropriately diluted to 8 ml with 0.5 M acetate buffer at pH 4.0. Two 

ml of 3% ammonium molybdate (3 g in 100 ml 0.5 M acetate buffer) and 1 

ml of 1% ascorbic acid were added and tubes were inverted to mix the 

contents thoroughly. After 45 min, two readings per tube were made at 

700 nm on a Spectronic 20. Protein was determined on the initial 

filtrate using the Biuret method (Bailey, 1967). 

For soybean, the wholemeal sample was partially purified prior to 

the assay. Ten ml of 2% CaCl2 dihydrate was stirred into each 1 g of 

wholemeal sample. Samples were mechanically shaken for 30 min, followed 

by centrifugation for 15 min at 3440 g and filtration through Whatman 

#1 filter paper. Five ml of filtrate from each sample was taken to 30% 

ammonium sulfate concentration with constant stirring. The sample was 

cooled for 30 min at 4°C, and centrifuged at 4°C for 20 min at 7710 g. 

Four ml of supernatant was extracted for each sample, and the ammonium 

sulfate concentration was increased to 85% saturation. Following 

centrifugation at 4°C for 20 min at 7710 g, the precipitate was 

retained and resuspended in 5 ml of 0.2 M tris-maleate buffer at pH 6.5. 
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This enzyme extract was refrigerated until used, a period of no more 

than 1.5 hr. Protein was determined on this extract. 

For the enzyme assay, several modifications were made to the 

procedure described for wheat. The assay mixture consisted of 2 ml 

0.1 M acetate buffer at pH 4.8, 3 ml 10 mM phytate (sodium phytate 

dissolved in 0.1 M acetate buffer) to give a final concentration of 5 

mM, and 1 ml enzyme extract. The blank mixture consisted of 5 ml 

acetate buffer plus 1 ml enzyme extract. Tubes were incubated in a 

water bath at 55°C. Results of a timecourse test indicated that the 

reaction was linear for up to 0.5 hr. At zero time and after 0.5 hr, 

aliquots of 2 ml were withdrawn and added to tubes that contained 8 ml 

of 0.5 M acetate buffer at pH 4.3 and 2 ml 5% trichloroacetic acid. 

After 1 hr, tubes were centrifuged for 15 min at 3440 g. Eight ml of 

the supernatant was added to 2 ml ammonium molybdate solution and 1 ml 

ascorbic acid. Readings were made as for the wheat samples. 

Phytase activity is reported as micromoles of phosphorus/min/100 g 

of dry plant material under the conditions specified in materials and 

methods. 

Results and Discussion 

As illustrated in Table 1, phytate content in soybeans increased 

after 8 hr of sprouting. Phytate content did not decrease to a lower 

content until 192 hours of sprouting. Phytate in wheat did not differ 

among sampling stages. When osmoconditioned and untreated sprouts were 

compared (Table 2), the two groups did not differ. The differences 

among sprouting stages in soybean were comparable to those noted for 
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Table 1. 

Phytase activity differed among sampling stages for both soybean 

and wheat (Table 3). However, while activity in soybean did not 

increase until the latter stages of sprouting (144 and 192 hours), in 

wheat the activity increased with the initial hydration, decreased when 

seeds were dehydrated, and increased throughout the sprouting period. 

Osmoconditioned and untreated sprouts did not differ in activity (Table 

4) . 

The phytase activity of wheat seeds and sprouts increased in a 

stepwise manner during the sprouting period achieving a ten-fold 

increase by 144 hr. Bartnik and Szafranska (1987) reported similar 

increases in phytase activity in wheat at successive stages of sprouting 

up to 96 hr. They reported concomitant decreases in phytate, with a 22% 

reduction achieved after 96 hr. The data presented here (Table 1) 

indicate a decrease of approximately 17% at 96 hr, but the experimental 

error was sufficiently high to prevent that decrease from being 

statistically significant. 

For soybean, the increase in phytase activity at 144 to 192 hr 

corresponds with the decrease in phytate content, suggesting that 

phytase was responsible for phytate hydrolysis. Gibson and Ullah (1988) 

reported maximal phytase activity in soybean cotyledons at 8-12 days 

(192-288 hr), but they did not measure concurrent phytate content. The 

increase in phytate at 8 hr occurred when phytase activity was low, 

lending support to the earlier cited reports of phytate synthesis 

occurring during the early stages of hydration and sprouting. 
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When phytase activity was calculated per unit of protein rather 

than per unit of dry plant material (data not shown), the statistical 

analysis produced the same significant factors and the same separation 

of means. 

Although there are numerous research reports on phytate, the 

interplay of synthesis and hydrolysis in sprouting seeds is not well 

understood. Williams (1970) pointed out that phytate, in addition to 

serving as a phosphorus store, is a strong chelator and therefore plays 

a significant role in controlling the many cellular processes dependent 

on multivalent cations. Such a role dictates the necessity of 

regulating phytate metabolism during seed sprouting and seedling 

establishment. Strother (1980) suggested that a homeostatic mechanism 

exists with regard to phytate metabolism, based on his finding that 

phosphate in seedlings tends to remain constant during germination when 

expressed on a fresh weight basis. 

Conclusions 

The crop and the stage of hydration and sprouting play a role in 

the phytase activity and the phytate content in sprouted seeds. In 

wheat, phytate content remained relatively constant during sprouting 

while the phytase activity increased steadily during a full 144 hr of 

sprouting. In contrast, soybean phytate content increased in the early 

stages of sprouting and did not decrease until phytase activity 

increased. Phytase activity was quite low in soybean, and did not 

increase until 144 to 192 hr of sprouting. A thorough study of phytate 

synthesis in a variety of crops is essential if the changes in phytate 
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content are to be understandable and predictable. 
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Table 1. Phytate content of soybean and wheat seeds and sprouts 
during hydration, dehydration, and sprouting. 

Source of Phytate Concentration (g/lOOg dry material) 
Variation^ Soybean Wheat 

Sampling Stage nst> 

Untreated 1.49Cy 0.97 
Hydrated 1.81 yz 0.98 
Dehydrated 1.60 yz 0.90 
8/10 Hr Sprouting 2.24 z 1.05 
24 Hr Sprouting 1.88 yz 0.88 
48 Hr Sprouting 1.98 yz 0 .72 
96 Hr Sprouting 1.72 yz 0.80 
144 Hr Sprouting 1.96 yz 0.85 
192 Hr Sprouting 1.42 y nd^ 

^General linear models procedure, SAS. 
'2ns=not significant at the 5% level. 
"^Values are means of 3 replications; different letters (y,z) 
indicate statistically significant differences at the 5% level, 
Student-Newman-Keuls (SNK) test. 

<^nd=not determined. 

Table 2. Phytate content of osmoconditioned and untreated 
soybean and wheat seeds and sprouts during a 192 hr 
sprouting period. 

Source of 
Variation^ 

Phytate Concentration 
Soybean 

(g/lOOg dry material) 
Wheat 

Hydration Treatment ns'̂  ns 
Osmoconditioned 1.83 0.86 
Untreated 1.87 0.90 

Sprouting Stage ns 
0 Hr 1.57Cx 0.90 
8/10 Hr 2.13 z 1.01 
24 Hr 1.85 xyz 0.94 
48 Hr 2.01 yz 0.80 
96 Hr 1.78 xyz 0.83 
144 Hr 1.94 xyz 0.86 
192 Hr 1.66 xy ndd 

^General linear models procedure, SAS. 
bns=not significant at the 5% level. 
^Values are means of 2 hydration treatments and 3 replications; 
different letters (x,y,z) indicate statistically significant 
differences at the 5% level, SNK test. 

<^nd=not determined. 
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Table 3. Phytase activity in soybean and wheat seeds and sprouts 
during hydration, dehydration, and sprouting. 

Source of urn P/min/100 g dry material 
Variation^ Soybean Wheat 

Sampling Stage 
Untreated 4, .46^x 16, .24 V 
Hydrated 4 , .52 X 35, .41 w 
Dehydrated 3, .50 X 19 .36 V 
8/10 Hr Sprouting 5. .10 X 38 .28 w 
24 Hr Sprouting 3, .92 X 40 .28 w 
48 Hr Sprouting 5. .10 X 55, .05 X 
96 Hr Sprouting 7. .90 X 123 , .73 y  
144 Hr Sprouting 16. .76 y  160, .43 z 
192 Hr Sprouting 23, .77 z nd^ 

^General linear models procedure, SAS. 
tiValues are means of 3 replications; different letters (v,w,x,y,z) 
indicate statistically significant differences at the 5% level, SNK test. 
Cnd=not determined. 

Table 4. Phytase activity in soybean and wheat seeds and sprouts 
during a 192 hr sprouting period. 

Source of um P/min/100 g dry material 
Variation^ Soybean Wheat 

Hydration Treatment nsb ns 
Osmoconditioned 9.71 75.63 
Untreated 8 .57 74 .82 

Sprouting Stage 
0 Hr 2.93CX 9.76 V 
8/10 Hr 4.62 X 39.50 w 
24 Hr 4.78 X 38.58 w 
48 Hr 5.86 X 57.99 X 
96 Hr 8.06 X 138.57 y  
144 Hr 15.74 y 155.99 z 
192 Hr 20.55 z nd<^ 

^General linear models procedure, SAS. 
tins=not significant at the 5% level. 
^Values are means of 2 hydration treatments and 3 replications; 
different letters (v,w,x,y,z) indicate statistically significant 
differences at the 5% level, SNK test. 

dnd=not determined. 
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GENERAL CONCLUSIONS 

For foodstuff production, the osmoconditioning of seeds is a novel 

and useful means of enhancing sprout production. As expected, 

osmoconditioned seeds sprouted more quickly than untreated seeds, even 

following storage. Future research should more fully address suboptimal 

storage and sprouting conditions, since agronomic research indicates 

that the greatest benefits of osmoconditioning are observed when seeds 

are subjected to environmental stress. 

Osmoconditioning (hydration followed by dehydration) did not create 

any microbial problems, but rather provided a means for reducing 

microbial counts on dry seeds through the use of antimicrobial osmotica. 

By combining osmoconditioning with extended dry storage in sealed 

containers, it may be possible to further reduce microbial counts, thus 

enhancing the safety, shelf-life, and palatability of seeds and sprouts. 

However, while citric acid is a suitable osmotica for foodstuff 

production, polyethylene glycol is not currently considered a food-grade 

material for osmoconditioning treatment. 

Sensory attributes were not impacted by osmoconditioning, so there 

are no drawbacks to osmoconditioning in this regard. Testing of 

additional crops, different sprouting periods, and longer shelf-life 

periods may reveal some advantages for using osmoconditioned seeds. 

Osmoconditioned seeds did not differ from untreated seeds with 

regard to changes in phytate content during the sprouting period. The 

increased phytate content in several crops, noted in the early stages of 

sprouting, contradicts the generally accepted belief that sprouts have 
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reduced phytate content. Timecourse studies on a wide range of crops 

would be useful in determining at what stages and in what crops phytate 

is relatively higher and lower. 

In conclusion, osmoconditioning is a safe and simple means of 

enhancing sprout production. The minimal input of time and materials 

would be especially justifiable when rapid production of a microbially 

clean foodstuff is required, as in space travel and colonization and 

commercial preparation of weaning foods from sprouted seeds. 
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